Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > oml | GIF version |
Description: Orthomodular law. Compare Thm. 1 of Pavicic 1987. (Contributed by NM, 12-Aug-1997.) |
Ref | Expression |
---|---|
oml | (a ∪ (a⊥ ∩ (a ∪ b))) = (a ∪ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omlem1 127 | . 2 ((a ∪ (a⊥ ∩ (a ∪ b))) ∪ (a ∪ b)) = (a ∪ b) | |
2 | omlem2 128 | . 2 ((a ∪ b)⊥ ∪ (a ∪ (a⊥ ∩ (a ∪ b)))) = 1 | |
3 | 1, 2 | lem3.1 443 | 1 (a ∪ (a⊥ ∩ (a ∪ b))) = (a ∪ b) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 |
This theorem is referenced by: omln 446 oml5 449 oml2 451 ud1lem2 561 ud2lem2 564 ud3lem2 571 ud4lem2 582 ud5lem3 594 test 802 2oalem1 825 oas 925 oat 927 lem4.6.6i2j4 1097 |
Copyright terms: Public domain | W3C validator |