QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  thm3.8i1lem GIF version

Theorem thm3.8i1lem 1080
Description: Lemma intended for ~ thm3.8i1 . (Contributed by Roy F. Longton, 30-Jun-2005.) (Revised by Roy F. Longton, 31-Mar-2011.)
Assertion
Ref Expression
thm3.8i1lem (a1 b) = ((b0 a) ∩ (a1 b))

Proof of Theorem thm3.8i1lem
StepHypRef Expression
1 ax-a2 31 . . 3 (ab ) = (ba)
21ran 78 . 2 ((ab ) ∩ (a ∪ (ab))) = ((ba) ∩ (a ∪ (ab)))
3 df-id1 50 . 2 (a1 b) = ((ab ) ∩ (a ∪ (ab)))
4 df-i0 43 . . 3 (b0 a) = (ba)
5 df-i1 44 . . 3 (a1 b) = (a ∪ (ab))
64, 52an 79 . 2 ((b0 a) ∩ (a1 b)) = ((ba) ∩ (a ∪ (ab)))
72, 3, 63tr1 63 1 (a1 b) = ((b0 a) ∩ (a1 b))
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  0 wi0 11  1 wi1 12  1 wid1 18
This theorem was proved from axioms:  ax-a2 31  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-i0 43  df-i1 44  df-id1 50
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator