Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > thm3.8i1lem | GIF version |
Description: Lemma intended for ~ thm3.8i1 . (Contributed by Roy F. Longton, 30-Jun-2005.) (Revised by Roy F. Longton, 31-Mar-2011.) |
Ref | Expression |
---|---|
thm3.8i1lem | (a ≡1 b) = ((b →0 a) ∩ (a →1 b)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a2 31 | . . 3 (a ∪ b⊥ ) = (b⊥ ∪ a) | |
2 | 1 | ran 78 | . 2 ((a ∪ b⊥ ) ∩ (a⊥ ∪ (a ∩ b))) = ((b⊥ ∪ a) ∩ (a⊥ ∪ (a ∩ b))) |
3 | df-id1 50 | . 2 (a ≡1 b) = ((a ∪ b⊥ ) ∩ (a⊥ ∪ (a ∩ b))) | |
4 | df-i0 43 | . . 3 (b →0 a) = (b⊥ ∪ a) | |
5 | df-i1 44 | . . 3 (a →1 b) = (a⊥ ∪ (a ∩ b)) | |
6 | 4, 5 | 2an 79 | . 2 ((b →0 a) ∩ (a →1 b)) = ((b⊥ ∪ a) ∩ (a⊥ ∪ (a ∩ b))) |
7 | 2, 3, 6 | 3tr1 63 | 1 (a ≡1 b) = ((b →0 a) ∩ (a →1 b)) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →0 wi0 11 →1 wi1 12 ≡1 wid1 18 |
This theorem was proved from axioms: ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-i0 43 df-i1 44 df-id1 50 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |