QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  thm3.8i5 GIF version

Theorem thm3.8i5 1081
Description: (Contributed by Roy F. Longton, 29-Jun-2005.) (Revised by Roy F. Longton, 31-Mar-2011.)
Hypothesis
Ref Expression
thm3.8i5.1 (a5 b) = 1
Assertion
Ref Expression
thm3.8i5 ((ac) ≡5 (bc)) = 1

Proof of Theorem thm3.8i5
StepHypRef Expression
1 thm3.8i5.1 . 2 (a5 b) = 1
21lem3.4.6 1079 1 ((ac) ≡5 (bc)) = 1
Colors of variables: term
Syntax hints:   = wb 1  wo 6  1wt 8  5 wid5 22
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-wom 361
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-i0 43  df-i1 44  df-i2 45  df-le1 130  df-le2 131  df-id5 1047  df-b1 1048
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator