Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u1lem7 | GIF version |
Description: Lemma for unified implication study. (Contributed by NM, 24-Dec-1997.) |
Ref | Expression |
---|---|
u1lem7 | (a →1 (a⊥ →1 b)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i1 44 | . 2 (a →1 (a⊥ →1 b)) = (a⊥ ∪ (a ∩ (a⊥ →1 b))) | |
2 | ax-a1 30 | . . . . . 6 a = a⊥ ⊥ | |
3 | 2 | ran 78 | . . . . 5 (a ∩ (a⊥ →1 b)) = (a⊥ ⊥ ∩ (a⊥ →1 b)) |
4 | ancom 74 | . . . . . 6 (a⊥ ⊥ ∩ (a⊥ →1 b)) = ((a⊥ →1 b) ∩ a⊥ ⊥ ) | |
5 | u1lemana 605 | . . . . . 6 ((a⊥ →1 b) ∩ a⊥ ⊥ ) = a⊥ ⊥ | |
6 | 4, 5 | ax-r2 36 | . . . . 5 (a⊥ ⊥ ∩ (a⊥ →1 b)) = a⊥ ⊥ |
7 | 3, 6 | ax-r2 36 | . . . 4 (a ∩ (a⊥ →1 b)) = a⊥ ⊥ |
8 | 7 | lor 70 | . . 3 (a⊥ ∪ (a ∩ (a⊥ →1 b))) = (a⊥ ∪ a⊥ ⊥ ) |
9 | df-t 41 | . . . 4 1 = (a⊥ ∪ a⊥ ⊥ ) | |
10 | 9 | ax-r1 35 | . . 3 (a⊥ ∪ a⊥ ⊥ ) = 1 |
11 | 8, 10 | ax-r2 36 | . 2 (a⊥ ∪ (a ∩ (a⊥ →1 b))) = 1 |
12 | 1, 11 | ax-r2 36 | 1 (a →1 (a⊥ →1 b)) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-i1 44 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |