Proof of Theorem u12lem
Step | Hyp | Ref
| Expression |
1 | | orordi 112 |
. . 3
((a →1 b) ∪ (b
∪ (a⊥ ∩ b⊥ ))) = (((a →1 b) ∪ b)
∪ ((a →1 b) ∪ (a⊥ ∩ b⊥ ))) |
2 | | u1lemob 630 |
. . . . 5
((a →1 b) ∪ b) =
(a⊥ ∪ b) |
3 | | df-i1 44 |
. . . . . . 7
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
4 | 3 | ax-r5 38 |
. . . . . 6
((a →1 b) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∪ (a ∩ b))
∪ (a⊥ ∩ b⊥ )) |
5 | | or32 82 |
. . . . . . 7
((a⊥ ∪
(a ∩ b)) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b)) |
6 | | orabs 120 |
. . . . . . . 8
(a⊥ ∪ (a⊥ ∩ b⊥ )) = a⊥ |
7 | 6 | ax-r5 38 |
. . . . . . 7
((a⊥ ∪
(a⊥ ∩ b⊥ )) ∪ (a ∩ b)) =
(a⊥ ∪ (a ∩ b)) |
8 | 5, 7 | ax-r2 36 |
. . . . . 6
((a⊥ ∪
(a ∩ b)) ∪ (a⊥ ∩ b⊥ )) = (a⊥ ∪ (a ∩ b)) |
9 | 4, 8 | ax-r2 36 |
. . . . 5
((a →1 b) ∪ (a⊥ ∩ b⊥ )) = (a⊥ ∪ (a ∩ b)) |
10 | 2, 9 | 2or 72 |
. . . 4
(((a →1 b) ∪ b)
∪ ((a →1 b) ∪ (a⊥ ∩ b⊥ ))) = ((a⊥ ∪ b) ∪ (a⊥ ∪ (a ∩ b))) |
11 | | id 59 |
. . . . . . 7
(a⊥ ∪ b) = (a⊥ ∪ b) |
12 | 11 | bile 142 |
. . . . . 6
(a⊥ ∪ b) ≤ (a⊥ ∪ b) |
13 | | lear 161 |
. . . . . . 7
(a ∩ b) ≤ b |
14 | 13 | lelor 166 |
. . . . . 6
(a⊥ ∪ (a ∩ b)) ≤
(a⊥ ∪ b) |
15 | 12, 14 | lel2or 170 |
. . . . 5
((a⊥ ∪ b) ∪ (a⊥ ∪ (a ∩ b)))
≤ (a⊥ ∪ b) |
16 | | leo 158 |
. . . . 5
(a⊥ ∪ b) ≤ ((a⊥ ∪ b) ∪ (a⊥ ∪ (a ∩ b))) |
17 | 15, 16 | lebi 145 |
. . . 4
((a⊥ ∪ b) ∪ (a⊥ ∪ (a ∩ b))) =
(a⊥ ∪ b) |
18 | 10, 17 | ax-r2 36 |
. . 3
(((a →1 b) ∪ b)
∪ ((a →1 b) ∪ (a⊥ ∩ b⊥ ))) = (a⊥ ∪ b) |
19 | 1, 18 | ax-r2 36 |
. 2
((a →1 b) ∪ (b
∪ (a⊥ ∩ b⊥ ))) = (a⊥ ∪ b) |
20 | | df-i2 45 |
. . 3
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
21 | 20 | lor 70 |
. 2
((a →1 b) ∪ (a
→2 b)) = ((a →1 b) ∪ (b
∪ (a⊥ ∩ b⊥ ))) |
22 | | df-i0 43 |
. 2
(a →0 b) = (a⊥ ∪ b) |
23 | 19, 21, 22 | 3tr1 63 |
1
((a →1 b) ∪ (a
→2 b)) = (a →0 b) |