Proof of Theorem u2lem7
Step | Hyp | Ref
| Expression |
1 | | df-i2 45 |
. 2
(a →2 (a⊥ →2 b)) = ((a⊥ →2 b) ∪ (a⊥ ∩ (a⊥ →2 b)⊥ )) |
2 | | df-i2 45 |
. . . . 5
(a⊥ →2
b) = (b ∪ (a⊥ ⊥ ∩
b⊥ )) |
3 | | ax-a1 30 |
. . . . . . . 8
a = a⊥
⊥ |
4 | 3 | ax-r1 35 |
. . . . . . 7
a⊥
⊥ = a |
5 | 4 | ran 78 |
. . . . . 6
(a⊥
⊥ ∩ b⊥ ) = (a ∩ b⊥ ) |
6 | 5 | lor 70 |
. . . . 5
(b ∪ (a⊥ ⊥ ∩
b⊥ )) = (b ∪ (a ∩
b⊥ )) |
7 | 2, 6 | ax-r2 36 |
. . . 4
(a⊥ →2
b) = (b ∪ (a ∩
b⊥ )) |
8 | | ancom 74 |
. . . . 5
(a⊥ ∩ (a⊥ →2 b)⊥ ) = ((a⊥ →2 b)⊥ ∩ a⊥ ) |
9 | | u2lemnaa 641 |
. . . . 5
((a⊥ →2
b)⊥ ∩ a⊥ ) = (a⊥ ∩ b⊥ ) |
10 | 8, 9 | ax-r2 36 |
. . . 4
(a⊥ ∩ (a⊥ →2 b)⊥ ) = (a⊥ ∩ b⊥ ) |
11 | 7, 10 | 2or 72 |
. . 3
((a⊥ →2
b) ∪ (a⊥ ∩ (a⊥ →2 b)⊥ )) = ((b ∪ (a ∩
b⊥ )) ∪ (a⊥ ∩ b⊥ )) |
12 | | ax-a3 32 |
. . . 4
((b ∪ (a ∩ b⊥ )) ∪ (a⊥ ∩ b⊥ )) = (b ∪ ((a
∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ))) |
13 | | ax-a2 31 |
. . . 4
(b ∪ ((a ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ))) = (((a ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )) ∪ b) |
14 | 12, 13 | ax-r2 36 |
. . 3
((b ∪ (a ∩ b⊥ )) ∪ (a⊥ ∩ b⊥ )) = (((a ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )) ∪ b) |
15 | 11, 14 | ax-r2 36 |
. 2
((a⊥ →2
b) ∪ (a⊥ ∩ (a⊥ →2 b)⊥ )) = (((a ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )) ∪ b) |
16 | 1, 15 | ax-r2 36 |
1
(a →2 (a⊥ →2 b)) = (((a ∩
b⊥ ) ∪ (a⊥ ∩ b⊥ )) ∪ b) |