QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  u1lem9b GIF version

Theorem u1lem9b 778
Description: Lemma used in study of orthoarguesian law. Equation 4.11 of [MegPav2000] p. 23. This is the second part of the inequality. (Contributed by NM, 27-Dec-1998.)
Assertion
Ref Expression
u1lem9b a ≤ (a1 b)

Proof of Theorem u1lem9b
StepHypRef Expression
1 leo 158 . 2 a ≤ (a ∪ (ab))
2 df-i1 44 . . 3 (a1 b) = (a ∪ (ab))
32ax-r1 35 . 2 (a ∪ (ab)) = (a1 b)
41, 3lbtr 139 1 a ≤ (a1 b)
Colors of variables: term
Syntax hints:  wle 2   wn 4  wo 6  wa 7  1 wi1 12
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-i1 44  df-le1 130  df-le2 131
This theorem is referenced by:  u1lem9ab  779  kb10iii  893  oasr  926  axoa4  1034  lem4.6.3le2  1085
  Copyright terms: Public domain W3C validator