QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  u1lem9ab GIF version

Theorem u1lem9ab 779
Description: Lemma used in study of orthoarguesian law. (Contributed by NM, 27-Dec-1998.)
Assertion
Ref Expression
u1lem9ab (a1 b) ≤ (a1 b)

Proof of Theorem u1lem9ab
StepHypRef Expression
1 u1lem9a 777 . 2 (a1 b)a
2 u1lem9b 778 . 2 a ≤ (a1 b)
31, 2letr 137 1 (a1 b) ≤ (a1 b)
Colors of variables: term
Syntax hints:  wle 2   wn 4  1 wi1 12
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-i1 44  df-le1 130  df-le2 131
This theorem is referenced by:  3vcom  813  oa3-u1  991  oa3-u2  992
  Copyright terms: Public domain W3C validator