Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u1lem9a | GIF version |
Description: Lemma used in study of orthoarguesian law. Equation 4.11 of [MegPav2000] p. 23. This is the first part of the inequality. (Contributed by NM, 28-Dec-1998.) |
Ref | Expression |
---|---|
u1lem9a | (a⊥ →1 b)⊥ ≤ a⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i1 44 | . . . 4 (a⊥ →1 b) = (a⊥ ⊥ ∪ (a⊥ ∩ b)) | |
2 | 1 | ax-r4 37 | . . 3 (a⊥ →1 b)⊥ = (a⊥ ⊥ ∪ (a⊥ ∩ b))⊥ |
3 | anor1 88 | . . . 4 (a⊥ ∩ (a⊥ ∩ b)⊥ ) = (a⊥ ⊥ ∪ (a⊥ ∩ b))⊥ | |
4 | 3 | ax-r1 35 | . . 3 (a⊥ ⊥ ∪ (a⊥ ∩ b))⊥ = (a⊥ ∩ (a⊥ ∩ b)⊥ ) |
5 | 2, 4 | ax-r2 36 | . 2 (a⊥ →1 b)⊥ = (a⊥ ∩ (a⊥ ∩ b)⊥ ) |
6 | lea 160 | . 2 (a⊥ ∩ (a⊥ ∩ b)⊥ ) ≤ a⊥ | |
7 | 5, 6 | bltr 138 | 1 (a⊥ →1 b)⊥ ≤ a⊥ |
Colors of variables: term |
Syntax hints: ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-i1 44 df-le1 130 df-le2 131 |
This theorem is referenced by: u1lem9ab 779 sadm3 838 oa4uto4g 975 oa4uto4 977 lem4.6.3le1 1084 |
Copyright terms: Public domain | W3C validator |