Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u2lem5 | GIF version |
Description: Lemma for unified implication study. (Contributed by NM, 20-Dec-1997.) |
Ref | Expression |
---|---|
u2lem5 | (a →2 (a →2 b)) = (a →2 b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i2 45 | . 2 (a →2 (a →2 b)) = ((a →2 b) ∪ (a⊥ ∩ (a →2 b)⊥ )) | |
2 | ancom 74 | . . . . 5 (a⊥ ∩ (a →2 b)⊥ ) = ((a →2 b)⊥ ∩ a⊥ ) | |
3 | u2lemnana 646 | . . . . 5 ((a →2 b)⊥ ∩ a⊥ ) = 0 | |
4 | 2, 3 | ax-r2 36 | . . . 4 (a⊥ ∩ (a →2 b)⊥ ) = 0 |
5 | 4 | lor 70 | . . 3 ((a →2 b) ∪ (a⊥ ∩ (a →2 b)⊥ )) = ((a →2 b) ∪ 0) |
6 | or0 102 | . . 3 ((a →2 b) ∪ 0) = (a →2 b) | |
7 | 5, 6 | ax-r2 36 | . 2 ((a →2 b) ∪ (a⊥ ∩ (a →2 b)⊥ )) = (a →2 b) |
8 | 1, 7 | ax-r2 36 | 1 (a →2 (a →2 b)) = (a →2 b) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 0wf 9 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i2 45 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |