Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u3lem5 | GIF version |
Description: Lemma for unified implication study. (Contributed by NM, 24-Dec-1997.) |
Ref | Expression |
---|---|
u3lem5 | (a →3 (a →3 b)) = (a⊥ ∪ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comi31 508 | . . 3 a C (a →3 b) | |
2 | 1 | u3lemc4 703 | . 2 (a →3 (a →3 b)) = (a⊥ ∪ (a →3 b)) |
3 | ax-a2 31 | . . 3 (a⊥ ∪ (a →3 b)) = ((a →3 b) ∪ a⊥ ) | |
4 | u3lemona 627 | . . 3 ((a →3 b) ∪ a⊥ ) = (a⊥ ∪ b) | |
5 | 3, 4 | ax-r2 36 | . 2 (a⊥ ∪ (a →3 b)) = (a⊥ ∪ b) |
6 | 2, 5 | ax-r2 36 | 1 (a →3 (a →3 b)) = (a⊥ ∪ b) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 →3 wi3 14 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: u3lem6 767 u3lem14mp 794 |
Copyright terms: Public domain | W3C validator |