Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u2lemle1 | GIF version |
Description: L.e. to Dishkant implication. (Contributed by NM, 11-Jan-1998.) |
Ref | Expression |
---|---|
ulemle1.1 | a ≤ b |
Ref | Expression |
---|---|
u2lemle1 | (a →2 b) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulemle1.1 | . . . 4 a ≤ b | |
2 | 1 | lecom 180 | . . 3 a C b |
3 | 2 | u2lemc4 702 | . 2 (a →2 b) = (a⊥ ∪ b) |
4 | 1 | sklem 230 | . 2 (a⊥ ∪ b) = 1 |
5 | 3, 4 | ax-r2 36 | 1 (a →2 b) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ⊥ wn 4 ∪ wo 6 1wt 8 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |