Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u2lemc4 | GIF version |
Description: Lemma for Dishkant implication study. (Contributed by NM, 24-Dec-1997.) |
Ref | Expression |
---|---|
ulemc3.1 | a C b |
Ref | Expression |
---|---|
u2lemc4 | (a →2 b) = (a⊥ ∪ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i2 45 | . 2 (a →2 b) = (b ∪ (a⊥ ∩ b⊥ )) | |
2 | ulemc3.1 | . . . . 5 a C b | |
3 | 2 | comcom3 454 | . . . 4 a⊥ C b |
4 | 2 | comcom4 455 | . . . 4 a⊥ C b⊥ |
5 | 3, 4 | fh4 472 | . . 3 (b ∪ (a⊥ ∩ b⊥ )) = ((b ∪ a⊥ ) ∩ (b ∪ b⊥ )) |
6 | ax-a2 31 | . . . . 5 (b ∪ a⊥ ) = (a⊥ ∪ b) | |
7 | df-t 41 | . . . . . 6 1 = (b ∪ b⊥ ) | |
8 | 7 | ax-r1 35 | . . . . 5 (b ∪ b⊥ ) = 1 |
9 | 6, 8 | 2an 79 | . . . 4 ((b ∪ a⊥ ) ∩ (b ∪ b⊥ )) = ((a⊥ ∪ b) ∩ 1) |
10 | an1 106 | . . . 4 ((a⊥ ∪ b) ∩ 1) = (a⊥ ∪ b) | |
11 | 9, 10 | ax-r2 36 | . . 3 ((b ∪ a⊥ ) ∩ (b ∪ b⊥ )) = (a⊥ ∪ b) |
12 | 5, 11 | ax-r2 36 | . 2 (b ∪ (a⊥ ∩ b⊥ )) = (a⊥ ∪ b) |
13 | 1, 12 | ax-r2 36 | 1 (a →2 b) = (a⊥ ∪ b) |
Colors of variables: term |
Syntax hints: = wb 1 C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: u2lemle1 711 |
Copyright terms: Public domain | W3C validator |