Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u2lemob | GIF version |
Description: Lemma for Dishkant implication study. (Contributed by NM, 15-Dec-1997.) |
Ref | Expression |
---|---|
u2lemob | ((a →2 b) ∪ b) = ((a⊥ ∩ b⊥ ) ∪ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i2 45 | . . 3 (a →2 b) = (b ∪ (a⊥ ∩ b⊥ )) | |
2 | 1 | ax-r5 38 | . 2 ((a →2 b) ∪ b) = ((b ∪ (a⊥ ∩ b⊥ )) ∪ b) |
3 | or32 82 | . . 3 ((b ∪ (a⊥ ∩ b⊥ )) ∪ b) = ((b ∪ b) ∪ (a⊥ ∩ b⊥ )) | |
4 | ax-a2 31 | . . . 4 ((b ∪ b) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ (b ∪ b)) | |
5 | oridm 110 | . . . . 5 (b ∪ b) = b | |
6 | 5 | lor 70 | . . . 4 ((a⊥ ∩ b⊥ ) ∪ (b ∪ b)) = ((a⊥ ∩ b⊥ ) ∪ b) |
7 | 4, 6 | ax-r2 36 | . . 3 ((b ∪ b) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ b) |
8 | 3, 7 | ax-r2 36 | . 2 ((b ∪ (a⊥ ∩ b⊥ )) ∪ b) = ((a⊥ ∩ b⊥ ) ∪ b) |
9 | 2, 8 | ax-r2 36 | 1 ((a →2 b) ∪ b) = ((a⊥ ∩ b⊥ ) ∪ b) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-t 41 df-f 42 df-i2 45 |
This theorem is referenced by: u2lemnanb 656 |
Copyright terms: Public domain | W3C validator |