| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u1lemob | GIF version | ||
| Description: Lemma for Sasaki implication study. (Contributed by NM, 15-Dec-1997.) |
| Ref | Expression |
|---|---|
| u1lemob | ((a →1 b) ∪ b) = (a⊥ ∪ b) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i1 44 | . . 3 (a →1 b) = (a⊥ ∪ (a ∩ b)) | |
| 2 | 1 | ax-r5 38 | . 2 ((a →1 b) ∪ b) = ((a⊥ ∪ (a ∩ b)) ∪ b) |
| 3 | or32 82 | . . 3 ((a⊥ ∪ (a ∩ b)) ∪ b) = ((a⊥ ∪ b) ∪ (a ∩ b)) | |
| 4 | ax-a2 31 | . . . 4 ((a⊥ ∪ b) ∪ (a ∩ b)) = ((a ∩ b) ∪ (a⊥ ∪ b)) | |
| 5 | lear 161 | . . . . . 6 (a ∩ b) ≤ b | |
| 6 | leor 159 | . . . . . 6 b ≤ (a⊥ ∪ b) | |
| 7 | 5, 6 | letr 137 | . . . . 5 (a ∩ b) ≤ (a⊥ ∪ b) |
| 8 | 7 | df-le2 131 | . . . 4 ((a ∩ b) ∪ (a⊥ ∪ b)) = (a⊥ ∪ b) |
| 9 | 4, 8 | ax-r2 36 | . . 3 ((a⊥ ∪ b) ∪ (a ∩ b)) = (a⊥ ∪ b) |
| 10 | 3, 9 | ax-r2 36 | . 2 ((a⊥ ∪ (a ∩ b)) ∪ b) = (a⊥ ∪ b) |
| 11 | 2, 10 | ax-r2 36 | 1 ((a →1 b) ∪ b) = (a⊥ ∪ b) |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-i1 44 df-le1 130 df-le2 131 |
| This theorem is referenced by: u1lemnanb 655 u12lem 771 salem1 837 |
| Copyright terms: Public domain | W3C validator |