Proof of Theorem u3lemob
Step | Hyp | Ref
| Expression |
1 | | df-i3 46 |
. . 3
(a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
2 | 1 | ax-r5 38 |
. 2
((a →3 b) ∪ b) =
((((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∪ b) |
3 | | or32 82 |
. . 3
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∪ b) =
((((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ b) ∪ (a
∩ (a⊥ ∪ b))) |
4 | | or32 82 |
. . . . . 6
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ b) = (((a⊥ ∩ b) ∪ b)
∪ (a⊥ ∩ b⊥ )) |
5 | | lear 161 |
. . . . . . . 8
(a⊥ ∩ b) ≤ b |
6 | 5 | df-le2 131 |
. . . . . . 7
((a⊥ ∩ b) ∪ b) =
b |
7 | 6 | ax-r5 38 |
. . . . . 6
(((a⊥ ∩
b) ∪ b) ∪ (a⊥ ∩ b⊥ )) = (b ∪ (a⊥ ∩ b⊥ )) |
8 | 4, 7 | ax-r2 36 |
. . . . 5
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ b) = (b ∪
(a⊥ ∩ b⊥ )) |
9 | | ancom 74 |
. . . . 5
(a ∩ (a⊥ ∪ b)) = ((a⊥ ∪ b) ∩ a) |
10 | 8, 9 | 2or 72 |
. . . 4
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ b) ∪ (a
∩ (a⊥ ∪ b))) = ((b ∪
(a⊥ ∩ b⊥ )) ∪ ((a⊥ ∪ b) ∩ a)) |
11 | | comor2 462 |
. . . . . . 7
(a⊥ ∪ b) C b |
12 | | comor1 461 |
. . . . . . . 8
(a⊥ ∪ b) C a⊥ |
13 | 11 | comcom2 183 |
. . . . . . . 8
(a⊥ ∪ b) C b⊥ |
14 | 12, 13 | com2an 484 |
. . . . . . 7
(a⊥ ∪ b) C (a⊥ ∩ b⊥ ) |
15 | 11, 14 | com2or 483 |
. . . . . 6
(a⊥ ∪ b) C (b
∪ (a⊥ ∩ b⊥ )) |
16 | 12 | comcom7 460 |
. . . . . 6
(a⊥ ∪ b) C a |
17 | 15, 16 | fh4 472 |
. . . . 5
((b ∪ (a⊥ ∩ b⊥ )) ∪ ((a⊥ ∪ b) ∩ a)) =
(((b ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b)) ∩ ((b
∪ (a⊥ ∩ b⊥ )) ∪ a)) |
18 | | or32 82 |
. . . . . . . 8
((b ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b)) = ((b ∪
(a⊥ ∪ b)) ∪ (a⊥ ∩ b⊥ )) |
19 | | or12 80 |
. . . . . . . . . . 11
(b ∪ (a⊥ ∪ b)) = (a⊥ ∪ (b ∪ b)) |
20 | | oridm 110 |
. . . . . . . . . . . 12
(b ∪ b) = b |
21 | 20 | lor 70 |
. . . . . . . . . . 11
(a⊥ ∪ (b ∪ b)) =
(a⊥ ∪ b) |
22 | 19, 21 | ax-r2 36 |
. . . . . . . . . 10
(b ∪ (a⊥ ∪ b)) = (a⊥ ∪ b) |
23 | 22 | ax-r5 38 |
. . . . . . . . 9
((b ∪ (a⊥ ∪ b)) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∪ b) ∪ (a⊥ ∩ b⊥ )) |
24 | | ax-a2 31 |
. . . . . . . . . 10
((a⊥ ∪ b) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∪ b)) |
25 | | lea 160 |
. . . . . . . . . . . 12
(a⊥ ∩ b⊥ ) ≤ a⊥ |
26 | | leo 158 |
. . . . . . . . . . . 12
a⊥ ≤ (a⊥ ∪ b) |
27 | 25, 26 | letr 137 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ) ≤ (a⊥ ∪ b) |
28 | 27 | df-le2 131 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∪ b)) = (a⊥ ∪ b) |
29 | 24, 28 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∪ b) ∪ (a⊥ ∩ b⊥ )) = (a⊥ ∪ b) |
30 | 23, 29 | ax-r2 36 |
. . . . . . . 8
((b ∪ (a⊥ ∪ b)) ∪ (a⊥ ∩ b⊥ )) = (a⊥ ∪ b) |
31 | 18, 30 | ax-r2 36 |
. . . . . . 7
((b ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b)) = (a⊥ ∪ b) |
32 | | or32 82 |
. . . . . . . 8
((b ∪ (a⊥ ∩ b⊥ )) ∪ a) = ((b ∪
a) ∪ (a⊥ ∩ b⊥ )) |
33 | | ancom 74 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ) = (b⊥ ∩ a⊥ ) |
34 | | oran 87 |
. . . . . . . . . . . . 13
(b ∪ a) = (b⊥ ∩ a⊥
)⊥ |
35 | 34 | con2 67 |
. . . . . . . . . . . 12
(b ∪ a)⊥ = (b⊥ ∩ a⊥ ) |
36 | 35 | ax-r1 35 |
. . . . . . . . . . 11
(b⊥ ∩ a⊥ ) = (b ∪ a)⊥ |
37 | 33, 36 | ax-r2 36 |
. . . . . . . . . 10
(a⊥ ∩ b⊥ ) = (b ∪ a)⊥ |
38 | 37 | lor 70 |
. . . . . . . . 9
((b ∪ a) ∪ (a⊥ ∩ b⊥ )) = ((b ∪ a) ∪
(b ∪ a)⊥ ) |
39 | | df-t 41 |
. . . . . . . . . 10
1 = ((b ∪ a) ∪ (b
∪ a)⊥
) |
40 | 39 | ax-r1 35 |
. . . . . . . . 9
((b ∪ a) ∪ (b
∪ a)⊥ ) =
1 |
41 | 38, 40 | ax-r2 36 |
. . . . . . . 8
((b ∪ a) ∪ (a⊥ ∩ b⊥ )) = 1 |
42 | 32, 41 | ax-r2 36 |
. . . . . . 7
((b ∪ (a⊥ ∩ b⊥ )) ∪ a) = 1 |
43 | 31, 42 | 2an 79 |
. . . . . 6
(((b ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b)) ∩ ((b
∪ (a⊥ ∩ b⊥ )) ∪ a)) = ((a⊥ ∪ b) ∩ 1) |
44 | | an1 106 |
. . . . . 6
((a⊥ ∪ b) ∩ 1) = (a⊥ ∪ b) |
45 | 43, 44 | ax-r2 36 |
. . . . 5
(((b ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b)) ∩ ((b
∪ (a⊥ ∩ b⊥ )) ∪ a)) = (a⊥ ∪ b) |
46 | 17, 45 | ax-r2 36 |
. . . 4
((b ∪ (a⊥ ∩ b⊥ )) ∪ ((a⊥ ∪ b) ∩ a)) =
(a⊥ ∪ b) |
47 | 10, 46 | ax-r2 36 |
. . 3
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ b) ∪ (a
∩ (a⊥ ∪ b))) = (a⊥ ∪ b) |
48 | 3, 47 | ax-r2 36 |
. 2
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∪ b) =
(a⊥ ∪ b) |
49 | 2, 48 | ax-r2 36 |
1
((a →3 b) ∪ b) =
(a⊥ ∪ b) |