Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u2lemnanb | GIF version |
Description: Lemma for Dishkant implication study. (Contributed by NM, 16-Dec-1997.) |
Ref | Expression |
---|---|
u2lemnanb | ((a →2 b)⊥ ∩ b⊥ ) = ((a ∪ b) ∩ b⊥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | u2lemob 631 | . . . 4 ((a →2 b) ∪ b) = ((a⊥ ∩ b⊥ ) ∪ b) | |
2 | anor3 90 | . . . . 5 (a⊥ ∩ b⊥ ) = (a ∪ b)⊥ | |
3 | 2 | ax-r5 38 | . . . 4 ((a⊥ ∩ b⊥ ) ∪ b) = ((a ∪ b)⊥ ∪ b) |
4 | 1, 3 | ax-r2 36 | . . 3 ((a →2 b) ∪ b) = ((a ∪ b)⊥ ∪ b) |
5 | oran 87 | . . 3 ((a →2 b) ∪ b) = ((a →2 b)⊥ ∩ b⊥ )⊥ | |
6 | oran2 92 | . . 3 ((a ∪ b)⊥ ∪ b) = ((a ∪ b) ∩ b⊥ )⊥ | |
7 | 4, 5, 6 | 3tr2 64 | . 2 ((a →2 b)⊥ ∩ b⊥ )⊥ = ((a ∪ b) ∩ b⊥ )⊥ |
8 | 7 | con1 66 | 1 ((a →2 b)⊥ ∩ b⊥ ) = ((a ∪ b) ∩ b⊥ ) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i2 45 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |