QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  u3lem4 GIF version

Theorem u3lem4 758
Description: Lemma for unified implication study. (Contributed by NM, 21-Jan-1998.)
Assertion
Ref Expression
u3lem4 (a3 (a3 (b3 a))) = 1

Proof of Theorem u3lem4
StepHypRef Expression
1 lem4 511 . 2 (a3 (a3 (b3 a))) = (a ∪ (b3 a))
2 ax-a2 31 . . 3 (a ∪ (b3 a)) = ((b3 a) ∪ a )
3 u3lemonb 637 . . 3 ((b3 a) ∪ a ) = 1
42, 3ax-r2 36 . 2 (a ∪ (b3 a)) = 1
51, 4ax-r2 36 1 (a3 (a3 (b3 a))) = 1
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  1wt 8  3 wi3 14
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i3 46  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator