Proof of Theorem u1lem4
Step | Hyp | Ref
| Expression |
1 | | df-i1 44 |
. 2
(a →1 (a →1 (b →1 a))) = (a⊥ ∪ (a ∩ (a
→1 (b →1
a)))) |
2 | | comid 187 |
. . . . 5
a C a |
3 | 2 | comcom2 183 |
. . . 4
a C a⊥ |
4 | | u1lemc1 680 |
. . . 4
a C (a →1 (b →1 a)) |
5 | 3, 4 | fh4 472 |
. . 3
(a⊥ ∪ (a ∩ (a
→1 (b →1
a)))) = ((a⊥ ∪ a) ∩ (a⊥ ∪ (a →1 (b →1 a)))) |
6 | | ax-a2 31 |
. . . . . 6
(a⊥ ∪ a) = (a ∪
a⊥ ) |
7 | | df-t 41 |
. . . . . . 7
1 = (a ∪ a⊥ ) |
8 | 7 | ax-r1 35 |
. . . . . 6
(a ∪ a⊥ ) = 1 |
9 | 6, 8 | ax-r2 36 |
. . . . 5
(a⊥ ∪ a) = 1 |
10 | | ax-a2 31 |
. . . . . 6
(a⊥ ∪ (a →1 (b →1 a))) = ((a
→1 (b →1
a)) ∪ a⊥ ) |
11 | | u1lemona 625 |
. . . . . . 7
((a →1 (b →1 a)) ∪ a⊥ ) = (a⊥ ∪ (a ∩ (b
→1 a))) |
12 | | df-i1 44 |
. . . . . . . . . . 11
(b →1 a) = (b⊥ ∪ (b ∩ a)) |
13 | | ancom 74 |
. . . . . . . . . . . 12
(b ∩ a) = (a ∩
b) |
14 | 13 | lor 70 |
. . . . . . . . . . 11
(b⊥ ∪ (b ∩ a)) =
(b⊥ ∪ (a ∩ b)) |
15 | 12, 14 | ax-r2 36 |
. . . . . . . . . 10
(b →1 a) = (b⊥ ∪ (a ∩ b)) |
16 | 15 | lan 77 |
. . . . . . . . 9
(a ∩ (b →1 a)) = (a ∩
(b⊥ ∪ (a ∩ b))) |
17 | 16 | lor 70 |
. . . . . . . 8
(a⊥ ∪ (a ∩ (b
→1 a))) = (a⊥ ∪ (a ∩ (b⊥ ∪ (a ∩ b)))) |
18 | | u1lem3 749 |
. . . . . . . . . 10
(a →1 (b →1 a)) = (a⊥ ∪ ((a ∩ b) ∪
(a ∩ b⊥ ))) |
19 | | ax-a2 31 |
. . . . . . . . . . . . . 14
(b⊥ ∪ (a ∩ b)) =
((a ∩ b) ∪ b⊥ ) |
20 | 19 | lan 77 |
. . . . . . . . . . . . 13
(a ∩ (b⊥ ∪ (a ∩ b))) =
(a ∩ ((a ∩ b) ∪
b⊥ )) |
21 | | coman1 185 |
. . . . . . . . . . . . . . 15
(a ∩ b) C a |
22 | | coman2 186 |
. . . . . . . . . . . . . . . 16
(a ∩ b) C b |
23 | 22 | comcom2 183 |
. . . . . . . . . . . . . . 15
(a ∩ b) C b⊥ |
24 | 21, 23 | fh2 470 |
. . . . . . . . . . . . . 14
(a ∩ ((a ∩ b) ∪
b⊥ )) = ((a ∩ (a ∩
b)) ∪ (a ∩ b⊥ )) |
25 | | anass 76 |
. . . . . . . . . . . . . . . . 17
((a ∩ a) ∩ b) =
(a ∩ (a ∩ b)) |
26 | 25 | ax-r1 35 |
. . . . . . . . . . . . . . . 16
(a ∩ (a ∩ b)) =
((a ∩ a) ∩ b) |
27 | | anidm 111 |
. . . . . . . . . . . . . . . . 17
(a ∩ a) = a |
28 | 27 | ran 78 |
. . . . . . . . . . . . . . . 16
((a ∩ a) ∩ b) =
(a ∩ b) |
29 | 26, 28 | ax-r2 36 |
. . . . . . . . . . . . . . 15
(a ∩ (a ∩ b)) =
(a ∩ b) |
30 | 29 | ax-r5 38 |
. . . . . . . . . . . . . 14
((a ∩ (a ∩ b))
∪ (a ∩ b⊥ )) = ((a ∩ b) ∪
(a ∩ b⊥ )) |
31 | 24, 30 | ax-r2 36 |
. . . . . . . . . . . . 13
(a ∩ ((a ∩ b) ∪
b⊥ )) = ((a ∩ b) ∪
(a ∩ b⊥ )) |
32 | 20, 31 | ax-r2 36 |
. . . . . . . . . . . 12
(a ∩ (b⊥ ∪ (a ∩ b))) =
((a ∩ b) ∪ (a
∩ b⊥
)) |
33 | 32 | ax-r1 35 |
. . . . . . . . . . 11
((a ∩ b) ∪ (a
∩ b⊥ )) = (a ∩ (b⊥ ∪ (a ∩ b))) |
34 | 33 | lor 70 |
. . . . . . . . . 10
(a⊥ ∪
((a ∩ b) ∪ (a
∩ b⊥ ))) = (a⊥ ∪ (a ∩ (b⊥ ∪ (a ∩ b)))) |
35 | 18, 34 | ax-r2 36 |
. . . . . . . . 9
(a →1 (b →1 a)) = (a⊥ ∪ (a ∩ (b⊥ ∪ (a ∩ b)))) |
36 | 35 | ax-r1 35 |
. . . . . . . 8
(a⊥ ∪ (a ∩ (b⊥ ∪ (a ∩ b)))) =
(a →1 (b →1 a)) |
37 | 17, 36 | ax-r2 36 |
. . . . . . 7
(a⊥ ∪ (a ∩ (b
→1 a))) = (a →1 (b →1 a)) |
38 | 11, 37 | ax-r2 36 |
. . . . . 6
((a →1 (b →1 a)) ∪ a⊥ ) = (a →1 (b →1 a)) |
39 | 10, 38 | ax-r2 36 |
. . . . 5
(a⊥ ∪ (a →1 (b →1 a))) = (a
→1 (b →1
a)) |
40 | 9, 39 | 2an 79 |
. . . 4
((a⊥ ∪ a) ∩ (a⊥ ∪ (a →1 (b →1 a)))) = (1 ∩ (a →1 (b →1 a))) |
41 | | ancom 74 |
. . . . 5
(1 ∩ (a →1
(b →1 a))) = ((a
→1 (b →1
a)) ∩ 1) |
42 | | an1 106 |
. . . . 5
((a →1 (b →1 a)) ∩ 1) = (a →1 (b →1 a)) |
43 | 41, 42 | ax-r2 36 |
. . . 4
(1 ∩ (a →1
(b →1 a))) = (a
→1 (b →1
a)) |
44 | 40, 43 | ax-r2 36 |
. . 3
((a⊥ ∪ a) ∩ (a⊥ ∪ (a →1 (b →1 a)))) = (a
→1 (b →1
a)) |
45 | 5, 44 | ax-r2 36 |
. 2
(a⊥ ∪ (a ∩ (a
→1 (b →1
a)))) = (a →1 (b →1 a)) |
46 | 1, 45 | ax-r2 36 |
1
(a →1 (a →1 (b →1 a))) = (a
→1 (b →1
a)) |