Proof of Theorem u3lemonb
Step | Hyp | Ref
| Expression |
1 | | df-i3 46 |
. . 3
(a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
2 | 1 | ax-r5 38 |
. 2
((a →3 b) ∪ b⊥ ) = ((((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∪ b⊥ ) |
3 | | or32 82 |
. . 3
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∪ b⊥ ) = ((((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ b⊥ ) ∪ (a ∩ (a⊥ ∪ b))) |
4 | | ax-a3 32 |
. . . . . 6
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ b⊥ ) = ((a⊥ ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ b⊥ )) |
5 | | lear 161 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) ≤ b⊥ |
6 | 5 | df-le2 131 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∪ b⊥ ) = b⊥ |
7 | 6 | lor 70 |
. . . . . 6
((a⊥ ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ b⊥ )) = ((a⊥ ∩ b) ∪ b⊥ ) |
8 | 4, 7 | ax-r2 36 |
. . . . 5
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ b⊥ ) = ((a⊥ ∩ b) ∪ b⊥ ) |
9 | | ancom 74 |
. . . . 5
(a ∩ (a⊥ ∪ b)) = ((a⊥ ∪ b) ∩ a) |
10 | 8, 9 | 2or 72 |
. . . 4
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ b⊥ ) ∪ (a ∩ (a⊥ ∪ b))) = (((a⊥ ∩ b) ∪ b⊥ ) ∪ ((a⊥ ∪ b) ∩ a)) |
11 | | comor1 461 |
. . . . . . . 8
(a⊥ ∪ b) C a⊥ |
12 | | comor2 462 |
. . . . . . . 8
(a⊥ ∪ b) C b |
13 | 11, 12 | com2an 484 |
. . . . . . 7
(a⊥ ∪ b) C (a⊥ ∩ b) |
14 | 12 | comcom2 183 |
. . . . . . 7
(a⊥ ∪ b) C b⊥ |
15 | 13, 14 | com2or 483 |
. . . . . 6
(a⊥ ∪ b) C ((a⊥ ∩ b) ∪ b⊥ ) |
16 | 11 | comcom7 460 |
. . . . . 6
(a⊥ ∪ b) C a |
17 | 15, 16 | fh4 472 |
. . . . 5
(((a⊥ ∩
b) ∪ b⊥ ) ∪ ((a⊥ ∪ b) ∩ a)) =
((((a⊥ ∩ b) ∪ b⊥ ) ∪ (a⊥ ∪ b)) ∩ (((a⊥ ∩ b) ∪ b⊥ ) ∪ a)) |
18 | | ax-a3 32 |
. . . . . . . 8
(((a⊥ ∩
b) ∪ b⊥ ) ∪ (a⊥ ∪ b)) = ((a⊥ ∩ b) ∪ (b⊥ ∪ (a⊥ ∪ b))) |
19 | | ax-a2 31 |
. . . . . . . . . . 11
(b⊥ ∪ (a⊥ ∪ b)) = ((a⊥ ∪ b) ∪ b⊥ ) |
20 | | ax-a3 32 |
. . . . . . . . . . . 12
((a⊥ ∪ b) ∪ b⊥ ) = (a⊥ ∪ (b ∪ b⊥ )) |
21 | | df-t 41 |
. . . . . . . . . . . . . . 15
1 = (b ∪ b⊥ ) |
22 | 21 | ax-r1 35 |
. . . . . . . . . . . . . 14
(b ∪ b⊥ ) = 1 |
23 | 22 | lor 70 |
. . . . . . . . . . . . 13
(a⊥ ∪ (b ∪ b⊥ )) = (a⊥ ∪ 1) |
24 | | or1 104 |
. . . . . . . . . . . . 13
(a⊥ ∪ 1) =
1 |
25 | 23, 24 | ax-r2 36 |
. . . . . . . . . . . 12
(a⊥ ∪ (b ∪ b⊥ )) = 1 |
26 | 20, 25 | ax-r2 36 |
. . . . . . . . . . 11
((a⊥ ∪ b) ∪ b⊥ ) = 1 |
27 | 19, 26 | ax-r2 36 |
. . . . . . . . . 10
(b⊥ ∪ (a⊥ ∪ b)) = 1 |
28 | 27 | lor 70 |
. . . . . . . . 9
((a⊥ ∩ b) ∪ (b⊥ ∪ (a⊥ ∪ b))) = ((a⊥ ∩ b) ∪ 1) |
29 | | or1 104 |
. . . . . . . . 9
((a⊥ ∩ b) ∪ 1) = 1 |
30 | 28, 29 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩ b) ∪ (b⊥ ∪ (a⊥ ∪ b))) = 1 |
31 | 18, 30 | ax-r2 36 |
. . . . . . 7
(((a⊥ ∩
b) ∪ b⊥ ) ∪ (a⊥ ∪ b)) = 1 |
32 | | ax-a3 32 |
. . . . . . . 8
(((a⊥ ∩
b) ∪ b⊥ ) ∪ a) = ((a⊥ ∩ b) ∪ (b⊥ ∪ a)) |
33 | | ancom 74 |
. . . . . . . . . . . . 13
(a⊥ ∩ b) = (b ∩
a⊥ ) |
34 | | anor1 88 |
. . . . . . . . . . . . 13
(b ∩ a⊥ ) = (b⊥ ∪ a)⊥ |
35 | 33, 34 | ax-r2 36 |
. . . . . . . . . . . 12
(a⊥ ∩ b) = (b⊥ ∪ a)⊥ |
36 | 35 | con2 67 |
. . . . . . . . . . 11
(a⊥ ∩ b)⊥ = (b⊥ ∪ a) |
37 | 36 | ax-r1 35 |
. . . . . . . . . 10
(b⊥ ∪ a) = (a⊥ ∩ b)⊥ |
38 | 37 | lor 70 |
. . . . . . . . 9
((a⊥ ∩ b) ∪ (b⊥ ∪ a)) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b)⊥ ) |
39 | | df-t 41 |
. . . . . . . . . 10
1 = ((a⊥ ∩
b) ∪ (a⊥ ∩ b)⊥ ) |
40 | 39 | ax-r1 35 |
. . . . . . . . 9
((a⊥ ∩ b) ∪ (a⊥ ∩ b)⊥ ) = 1 |
41 | 38, 40 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩ b) ∪ (b⊥ ∪ a)) = 1 |
42 | 32, 41 | ax-r2 36 |
. . . . . . 7
(((a⊥ ∩
b) ∪ b⊥ ) ∪ a) = 1 |
43 | 31, 42 | 2an 79 |
. . . . . 6
((((a⊥ ∩
b) ∪ b⊥ ) ∪ (a⊥ ∪ b)) ∩ (((a⊥ ∩ b) ∪ b⊥ ) ∪ a)) = (1 ∩ 1) |
44 | | an1 106 |
. . . . . 6
(1 ∩ 1) = 1 |
45 | 43, 44 | ax-r2 36 |
. . . . 5
((((a⊥ ∩
b) ∪ b⊥ ) ∪ (a⊥ ∪ b)) ∩ (((a⊥ ∩ b) ∪ b⊥ ) ∪ a)) = 1 |
46 | 17, 45 | ax-r2 36 |
. . . 4
(((a⊥ ∩
b) ∪ b⊥ ) ∪ ((a⊥ ∪ b) ∩ a)) =
1 |
47 | 10, 46 | ax-r2 36 |
. . 3
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ b⊥ ) ∪ (a ∩ (a⊥ ∪ b))) = 1 |
48 | 3, 47 | ax-r2 36 |
. 2
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∪ b⊥ ) = 1 |
49 | 2, 48 | ax-r2 36 |
1
((a →3 b) ∪ b⊥ ) = 1 |