| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u3lemc2 | GIF version | ||
| Description: Commutation theorem for Kalmbach implication. (Contributed by NM, 14-Dec-1997.) |
| Ref | Expression |
|---|---|
| ulemc2.1 | a C b |
| ulemc2.2 | a C c |
| Ref | Expression |
|---|---|
| u3lemc2 | a C (b →3 c) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulemc2.1 | . 2 a C b | |
| 2 | ulemc2.2 | . 2 a C c | |
| 3 | 1, 2 | com2i3 509 | 1 a C (b →3 c) |
| Colors of variables: term |
| Syntax hints: C wc 3 →3 wi3 14 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: u3lem2 746 |
| Copyright terms: Public domain | W3C validator |