Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u4lemc2 | GIF version |
Description: Commutation theorem for non-tollens implication. (Contributed by NM, 14-Dec-1997.) |
Ref | Expression |
---|---|
ulemc2.1 | a C b |
ulemc2.2 | a C c |
Ref | Expression |
---|---|
u4lemc2 | a C (b →4 c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulemc2.1 | . . . . 5 a C b | |
2 | ulemc2.2 | . . . . 5 a C c | |
3 | 1, 2 | com2an 484 | . . . 4 a C (b ∩ c) |
4 | 1 | comcom2 183 | . . . . 5 a C b⊥ |
5 | 4, 2 | com2an 484 | . . . 4 a C (b⊥ ∩ c) |
6 | 3, 5 | com2or 483 | . . 3 a C ((b ∩ c) ∪ (b⊥ ∩ c)) |
7 | 4, 2 | com2or 483 | . . . 4 a C (b⊥ ∪ c) |
8 | 2 | comcom2 183 | . . . 4 a C c⊥ |
9 | 7, 8 | com2an 484 | . . 3 a C ((b⊥ ∪ c) ∩ c⊥ ) |
10 | 6, 9 | com2or 483 | . 2 a C (((b ∩ c) ∪ (b⊥ ∩ c)) ∪ ((b⊥ ∪ c) ∩ c⊥ )) |
11 | df-i4 47 | . . 3 (b →4 c) = (((b ∩ c) ∪ (b⊥ ∩ c)) ∪ ((b⊥ ∪ c) ∩ c⊥ )) | |
12 | 11 | ax-r1 35 | . 2 (((b ∩ c) ∪ (b⊥ ∩ c)) ∪ ((b⊥ ∪ c) ∩ c⊥ )) = (b →4 c) |
13 | 10, 12 | cbtr 182 | 1 a C (b →4 c) |
Colors of variables: term |
Syntax hints: C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →4 wi4 15 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i4 47 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: u4lemc5 699 |
Copyright terms: Public domain | W3C validator |