Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u3lem2 | GIF version |
Description: Lemma for unified implication study. (Contributed by NM, 24-Dec-1997.) |
Ref | Expression |
---|---|
u3lem2 | (((a →3 b) →3 a) →3 a) = (a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comi31 508 | . . . . 5 a C (a →3 b) | |
2 | comid 187 | . . . . 5 a C a | |
3 | 1, 2 | u3lemc2 688 | . . . 4 a C ((a →3 b) →3 a) |
4 | 3 | comcom 453 | . . 3 ((a →3 b) →3 a) C a |
5 | 4 | u3lemc4 703 | . 2 (((a →3 b) →3 a) →3 a) = (((a →3 b) →3 a)⊥ ∪ a) |
6 | u3lem1n 741 | . . . 4 ((a →3 b) →3 a)⊥ = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) | |
7 | 6 | ax-r5 38 | . . 3 (((a →3 b) →3 a)⊥ ∪ a) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ a) |
8 | ax-a2 31 | . . 3 (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ a) = (a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) | |
9 | 7, 8 | ax-r2 36 | . 2 (((a →3 b) →3 a)⊥ ∪ a) = (a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
10 | 5, 9 | ax-r2 36 | 1 (((a →3 b) →3 a) →3 a) = (a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →3 wi3 14 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |