| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > com2i3 | GIF version | ||
| Description: Commutation theorem. (Contributed by NM, 9-Nov-1997.) |
| Ref | Expression |
|---|---|
| com2i3.1 | a C b |
| com2i3.2 | a C c |
| Ref | Expression |
|---|---|
| com2i3 | a C (b →3 c) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com2i3.1 | . . . . . 6 a C b | |
| 2 | 1 | comcom2 183 | . . . . 5 a C b⊥ |
| 3 | com2i3.2 | . . . . 5 a C c | |
| 4 | 2, 3 | com2an 484 | . . . 4 a C (b⊥ ∩ c) |
| 5 | 3 | comcom2 183 | . . . . 5 a C c⊥ |
| 6 | 2, 5 | com2an 484 | . . . 4 a C (b⊥ ∩ c⊥ ) |
| 7 | 4, 6 | com2or 483 | . . 3 a C ((b⊥ ∩ c) ∪ (b⊥ ∩ c⊥ )) |
| 8 | 2, 3 | com2or 483 | . . . 4 a C (b⊥ ∪ c) |
| 9 | 1, 8 | com2an 484 | . . 3 a C (b ∩ (b⊥ ∪ c)) |
| 10 | 7, 9 | com2or 483 | . 2 a C (((b⊥ ∩ c) ∪ (b⊥ ∩ c⊥ )) ∪ (b ∩ (b⊥ ∪ c))) |
| 11 | df-i3 46 | . . 3 (b →3 c) = (((b⊥ ∩ c) ∪ (b⊥ ∩ c⊥ )) ∪ (b ∩ (b⊥ ∪ c))) | |
| 12 | 11 | ax-r1 35 | . 2 (((b⊥ ∩ c) ∪ (b⊥ ∩ c⊥ )) ∪ (b ∩ (b⊥ ∪ c))) = (b →3 c) |
| 13 | 10, 12 | cbtr 182 | 1 a C (b →3 c) |
| Colors of variables: term |
| Syntax hints: C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →3 wi3 14 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: comi32 510 u3lemc2 688 |
| Copyright terms: Public domain | W3C validator |