QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  u5lemnab GIF version

Theorem u5lemnab 654
Description: Lemma for relevance implication study. (Contributed by NM, 16-Dec-1997.)
Assertion
Ref Expression
u5lemnab ((a5 b)b) = (((ab ) ∩ (ab )) ∩ b)

Proof of Theorem u5lemnab
StepHypRef Expression
1 u5lemonb 639 . . . 4 ((a5 b) ∪ b ) = (((ab) ∪ (ab)) ∪ b )
2 ax-a2 31 . . . . . 6 ((ab) ∪ (ab)) = ((ab) ∪ (ab))
3 anor2 89 . . . . . . . 8 (ab) = (ab )
4 df-a 40 . . . . . . . 8 (ab) = (ab )
53, 42or 72 . . . . . . 7 ((ab) ∪ (ab)) = ((ab ) ∪ (ab ) )
6 oran3 93 . . . . . . 7 ((ab ) ∪ (ab ) ) = ((ab ) ∩ (ab ))
75, 6ax-r2 36 . . . . . 6 ((ab) ∪ (ab)) = ((ab ) ∩ (ab ))
82, 7ax-r2 36 . . . . 5 ((ab) ∪ (ab)) = ((ab ) ∩ (ab ))
98ax-r5 38 . . . 4 (((ab) ∪ (ab)) ∪ b ) = (((ab ) ∩ (ab ))b )
101, 9ax-r2 36 . . 3 ((a5 b) ∪ b ) = (((ab ) ∩ (ab ))b )
11 oran1 91 . . 3 ((a5 b) ∪ b ) = ((a5 b)b)
12 oran3 93 . . 3 (((ab ) ∩ (ab ))b ) = (((ab ) ∩ (ab )) ∩ b)
1310, 11, 123tr2 64 . 2 ((a5 b)b) = (((ab ) ∩ (ab )) ∩ b)
1413con1 66 1 ((a5 b)b) = (((ab ) ∩ (ab )) ∩ b)
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  5 wi5 16
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-i5 48  df-le1 130  df-le2 131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator