Proof of Theorem u5lemnab
Step | Hyp | Ref
| Expression |
1 | | u5lemonb 639 |
. . . 4
((a →5 b) ∪ b⊥ ) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ b⊥ ) |
2 | | ax-a2 31 |
. . . . . 6
((a ∩ b) ∪ (a⊥ ∩ b)) = ((a⊥ ∩ b) ∪ (a
∩ b)) |
3 | | anor2 89 |
. . . . . . . 8
(a⊥ ∩ b) = (a ∪
b⊥
)⊥ |
4 | | df-a 40 |
. . . . . . . 8
(a ∩ b) = (a⊥ ∪ b⊥
)⊥ |
5 | 3, 4 | 2or 72 |
. . . . . . 7
((a⊥ ∩ b) ∪ (a
∩ b)) = ((a ∪ b⊥ )⊥ ∪
(a⊥ ∪ b⊥ )⊥
) |
6 | | oran3 93 |
. . . . . . 7
((a ∪ b⊥ )⊥ ∪
(a⊥ ∪ b⊥ )⊥ ) =
((a ∪ b⊥ ) ∩ (a⊥ ∪ b⊥
))⊥ |
7 | 5, 6 | ax-r2 36 |
. . . . . 6
((a⊥ ∩ b) ∪ (a
∩ b)) = ((a ∪ b⊥ ) ∩ (a⊥ ∪ b⊥
))⊥ |
8 | 2, 7 | ax-r2 36 |
. . . . 5
((a ∩ b) ∪ (a⊥ ∩ b)) = ((a ∪
b⊥ ) ∩ (a⊥ ∪ b⊥
))⊥ |
9 | 8 | ax-r5 38 |
. . . 4
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ b⊥ ) = (((a ∪ b⊥ ) ∩ (a⊥ ∪ b⊥ ))⊥ ∪
b⊥ ) |
10 | 1, 9 | ax-r2 36 |
. . 3
((a →5 b) ∪ b⊥ ) = (((a ∪ b⊥ ) ∩ (a⊥ ∪ b⊥ ))⊥ ∪
b⊥ ) |
11 | | oran1 91 |
. . 3
((a →5 b) ∪ b⊥ ) = ((a →5 b)⊥ ∩ b)⊥ |
12 | | oran3 93 |
. . 3
(((a ∪ b⊥ ) ∩ (a⊥ ∪ b⊥ ))⊥ ∪
b⊥ ) = (((a ∪ b⊥ ) ∩ (a⊥ ∪ b⊥ )) ∩ b)⊥ |
13 | 10, 11, 12 | 3tr2 64 |
. 2
((a →5 b)⊥ ∩ b)⊥ = (((a ∪ b⊥ ) ∩ (a⊥ ∪ b⊥ )) ∩ b)⊥ |
14 | 13 | con1 66 |
1
((a →5 b)⊥ ∩ b) = (((a ∪
b⊥ ) ∩ (a⊥ ∪ b⊥ )) ∩ b) |