Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u1lemnanb | GIF version |
Description: Lemma for Sasaki implication study. (Contributed by NM, 16-Dec-1997.) |
Ref | Expression |
---|---|
u1lemnanb | ((a →1 b)⊥ ∩ b⊥ ) = (a ∩ b⊥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | u1lemob 630 | . . 3 ((a →1 b) ∪ b) = (a⊥ ∪ b) | |
2 | oran 87 | . . 3 ((a →1 b) ∪ b) = ((a →1 b)⊥ ∩ b⊥ )⊥ | |
3 | oran2 92 | . . 3 (a⊥ ∪ b) = (a ∩ b⊥ )⊥ | |
4 | 1, 2, 3 | 3tr2 64 | . 2 ((a →1 b)⊥ ∩ b⊥ )⊥ = (a ∩ b⊥ )⊥ |
5 | 4 | con1 66 | 1 ((a →1 b)⊥ ∩ b⊥ ) = (a ∩ b⊥ ) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-i1 44 df-le1 130 df-le2 131 |
This theorem is referenced by: u3lem14a 791 |
Copyright terms: Public domain | W3C validator |