Proof of Theorem u5lem5
Step | Hyp | Ref
| Expression |
1 | | df-i5 48 |
. 2
(a →5 (a →5 b)) = (((a ∩
(a →5 b)) ∪ (a⊥ ∩ (a →5 b))) ∪ (a⊥ ∩ (a →5 b)⊥ )) |
2 | | u5lemc1 684 |
. . . . . . . 8
a C (a →5 b) |
3 | 2 | comcom 453 |
. . . . . . 7
(a →5 b) C a |
4 | 3 | comcom2 183 |
. . . . . . 7
(a →5 b) C a⊥ |
5 | 3, 4 | fh1r 473 |
. . . . . 6
((a ∪ a⊥ ) ∩ (a →5 b)) = ((a ∩
(a →5 b)) ∪ (a⊥ ∩ (a →5 b))) |
6 | 5 | ax-r1 35 |
. . . . 5
((a ∩ (a →5 b)) ∪ (a⊥ ∩ (a →5 b))) = ((a ∪
a⊥ ) ∩ (a →5 b)) |
7 | | ancom 74 |
. . . . . 6
((a ∪ a⊥ ) ∩ (a →5 b)) = ((a
→5 b) ∩ (a ∪ a⊥ )) |
8 | | df-t 41 |
. . . . . . . . 9
1 = (a ∪ a⊥ ) |
9 | 8 | ax-r1 35 |
. . . . . . . 8
(a ∪ a⊥ ) = 1 |
10 | 9 | lan 77 |
. . . . . . 7
((a →5 b) ∩ (a
∪ a⊥ )) = ((a →5 b) ∩ 1) |
11 | | an1 106 |
. . . . . . 7
((a →5 b) ∩ 1) = (a
→5 b) |
12 | 10, 11 | ax-r2 36 |
. . . . . 6
((a →5 b) ∩ (a
∪ a⊥ )) = (a →5 b) |
13 | 7, 12 | ax-r2 36 |
. . . . 5
((a ∪ a⊥ ) ∩ (a →5 b)) = (a
→5 b) |
14 | 6, 13 | ax-r2 36 |
. . . 4
((a ∩ (a →5 b)) ∪ (a⊥ ∩ (a →5 b))) = (a
→5 b) |
15 | 14 | ax-r5 38 |
. . 3
(((a ∩ (a →5 b)) ∪ (a⊥ ∩ (a →5 b))) ∪ (a⊥ ∩ (a →5 b)⊥ )) = ((a →5 b) ∪ (a⊥ ∩ (a →5 b)⊥ )) |
16 | 2 | comcom3 454 |
. . . . 5
a⊥ C
(a →5 b) |
17 | 2 | comcom4 455 |
. . . . 5
a⊥ C
(a →5 b)⊥ |
18 | 16, 17 | fh4 472 |
. . . 4
((a →5 b) ∪ (a⊥ ∩ (a →5 b)⊥ )) = (((a →5 b) ∪ a⊥ ) ∩ ((a →5 b) ∪ (a
→5 b)⊥
)) |
19 | | df-t 41 |
. . . . . . 7
1 = ((a →5 b) ∪ (a
→5 b)⊥
) |
20 | 19 | ax-r1 35 |
. . . . . 6
((a →5 b) ∪ (a
→5 b)⊥ ) =
1 |
21 | 20 | lan 77 |
. . . . 5
(((a →5 b) ∪ a⊥ ) ∩ ((a →5 b) ∪ (a
→5 b)⊥ ))
= (((a →5 b) ∪ a⊥ ) ∩ 1) |
22 | | an1 106 |
. . . . . 6
(((a →5 b) ∪ a⊥ ) ∩ 1) = ((a →5 b) ∪ a⊥ ) |
23 | | u5lemona 629 |
. . . . . 6
((a →5 b) ∪ a⊥ ) = (a⊥ ∪ (a ∩ b)) |
24 | 22, 23 | ax-r2 36 |
. . . . 5
(((a →5 b) ∪ a⊥ ) ∩ 1) = (a⊥ ∪ (a ∩ b)) |
25 | 21, 24 | ax-r2 36 |
. . . 4
(((a →5 b) ∪ a⊥ ) ∩ ((a →5 b) ∪ (a
→5 b)⊥ ))
= (a⊥ ∪ (a ∩ b)) |
26 | 18, 25 | ax-r2 36 |
. . 3
((a →5 b) ∪ (a⊥ ∩ (a →5 b)⊥ )) = (a⊥ ∪ (a ∩ b)) |
27 | 15, 26 | ax-r2 36 |
. 2
(((a ∩ (a →5 b)) ∪ (a⊥ ∩ (a →5 b))) ∪ (a⊥ ∩ (a →5 b)⊥ )) = (a⊥ ∪ (a ∩ b)) |
28 | 1, 27 | ax-r2 36 |
1
(a →5 (a →5 b)) = (a⊥ ∪ (a ∩ b)) |