Proof of Theorem u4lemona
Step | Hyp | Ref
| Expression |
1 | | df-i4 47 |
. . 3
(a →4 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) |
2 | 1 | ax-r5 38 |
. 2
((a →4 b) ∪ a⊥ ) = ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∪ a⊥ ) |
3 | | or32 82 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∪ a⊥ ) = ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ a⊥ ) ∪ ((a⊥ ∪ b) ∩ b⊥ )) |
4 | | ax-a3 32 |
. . . . . 6
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ a⊥ ) = ((a ∩ b) ∪
((a⊥ ∩ b) ∪ a⊥ )) |
5 | | lea 160 |
. . . . . . . 8
(a⊥ ∩ b) ≤ a⊥ |
6 | 5 | df-le2 131 |
. . . . . . 7
((a⊥ ∩ b) ∪ a⊥ ) = a⊥ |
7 | 6 | lor 70 |
. . . . . 6
((a ∩ b) ∪ ((a⊥ ∩ b) ∪ a⊥ )) = ((a ∩ b) ∪
a⊥ ) |
8 | 4, 7 | ax-r2 36 |
. . . . 5
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ a⊥ ) = ((a ∩ b) ∪
a⊥ ) |
9 | 8 | ax-r5 38 |
. . . 4
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ a⊥ ) ∪ ((a⊥ ∪ b) ∩ b⊥ )) = (((a ∩ b) ∪
a⊥ ) ∪ ((a⊥ ∪ b) ∩ b⊥ )) |
10 | | comor1 461 |
. . . . . . . . 9
(a⊥ ∪ b) C a⊥ |
11 | 10 | comcom7 460 |
. . . . . . . 8
(a⊥ ∪ b) C a |
12 | | comor2 462 |
. . . . . . . 8
(a⊥ ∪ b) C b |
13 | 11, 12 | com2an 484 |
. . . . . . 7
(a⊥ ∪ b) C (a
∩ b) |
14 | 13, 10 | com2or 483 |
. . . . . 6
(a⊥ ∪ b) C ((a
∩ b) ∪ a⊥ ) |
15 | 12 | comcom2 183 |
. . . . . 6
(a⊥ ∪ b) C b⊥ |
16 | 14, 15 | fh4 472 |
. . . . 5
(((a ∩ b) ∪ a⊥ ) ∪ ((a⊥ ∪ b) ∩ b⊥ )) = ((((a ∩ b) ∪
a⊥ ) ∪ (a⊥ ∪ b)) ∩ (((a
∩ b) ∪ a⊥ ) ∪ b⊥ )) |
17 | | lear 161 |
. . . . . . . . . 10
(a ∩ b) ≤ b |
18 | | leor 159 |
. . . . . . . . . 10
b ≤ (a⊥ ∪ b) |
19 | 17, 18 | letr 137 |
. . . . . . . . 9
(a ∩ b) ≤ (a⊥ ∪ b) |
20 | | leo 158 |
. . . . . . . . 9
a⊥ ≤ (a⊥ ∪ b) |
21 | 19, 20 | lel2or 170 |
. . . . . . . 8
((a ∩ b) ∪ a⊥ ) ≤ (a⊥ ∪ b) |
22 | 21 | df-le2 131 |
. . . . . . 7
(((a ∩ b) ∪ a⊥ ) ∪ (a⊥ ∪ b)) = (a⊥ ∪ b) |
23 | | ax-a3 32 |
. . . . . . . 8
(((a ∩ b) ∪ a⊥ ) ∪ b⊥ ) = ((a ∩ b) ∪
(a⊥ ∪ b⊥ )) |
24 | | df-a 40 |
. . . . . . . . . . . 12
(a ∩ b) = (a⊥ ∪ b⊥
)⊥ |
25 | 24 | ax-r1 35 |
. . . . . . . . . . 11
(a⊥ ∪ b⊥ )⊥ = (a ∩ b) |
26 | 25 | con3 68 |
. . . . . . . . . 10
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
27 | 26 | lor 70 |
. . . . . . . . 9
((a ∩ b) ∪ (a⊥ ∪ b⊥ )) = ((a ∩ b) ∪
(a ∩ b)⊥ ) |
28 | | df-t 41 |
. . . . . . . . . 10
1 = ((a ∩ b) ∪ (a
∩ b)⊥
) |
29 | 28 | ax-r1 35 |
. . . . . . . . 9
((a ∩ b) ∪ (a
∩ b)⊥ ) =
1 |
30 | 27, 29 | ax-r2 36 |
. . . . . . . 8
((a ∩ b) ∪ (a⊥ ∪ b⊥ )) = 1 |
31 | 23, 30 | ax-r2 36 |
. . . . . . 7
(((a ∩ b) ∪ a⊥ ) ∪ b⊥ ) = 1 |
32 | 22, 31 | 2an 79 |
. . . . . 6
((((a ∩ b) ∪ a⊥ ) ∪ (a⊥ ∪ b)) ∩ (((a
∩ b) ∪ a⊥ ) ∪ b⊥ )) = ((a⊥ ∪ b) ∩ 1) |
33 | | an1 106 |
. . . . . 6
((a⊥ ∪ b) ∩ 1) = (a⊥ ∪ b) |
34 | 32, 33 | ax-r2 36 |
. . . . 5
((((a ∩ b) ∪ a⊥ ) ∪ (a⊥ ∪ b)) ∩ (((a
∩ b) ∪ a⊥ ) ∪ b⊥ )) = (a⊥ ∪ b) |
35 | 16, 34 | ax-r2 36 |
. . . 4
(((a ∩ b) ∪ a⊥ ) ∪ ((a⊥ ∪ b) ∩ b⊥ )) = (a⊥ ∪ b) |
36 | 9, 35 | ax-r2 36 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ a⊥ ) ∪ ((a⊥ ∪ b) ∩ b⊥ )) = (a⊥ ∪ b) |
37 | 3, 36 | ax-r2 36 |
. 2
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∪ a⊥ ) = (a⊥ ∪ b) |
38 | 2, 37 | ax-r2 36 |
1
((a →4 b) ∪ a⊥ ) = (a⊥ ∪ b) |