Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > vneulem10 | GIF version |
Description: Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by NM, 31-Mar-2011.) |
Ref | Expression |
---|---|
vneulem6.1 | ((a ∪ b) ∩ (c ∪ d)) = 0 |
Ref | Expression |
---|---|
vneulem10 | (((a ∪ b) ∪ c) ∩ ((a ∪ c) ∪ d)) = (a ∪ c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a2 31 | . . . 4 (a ∪ b) = (b ∪ a) | |
2 | 1 | ax-r5 38 | . . 3 ((a ∪ b) ∪ c) = ((b ∪ a) ∪ c) |
3 | or32 82 | . . 3 ((a ∪ c) ∪ d) = ((a ∪ d) ∪ c) | |
4 | 2, 3 | 2an 79 | . 2 (((a ∪ b) ∪ c) ∩ ((a ∪ c) ∪ d)) = (((b ∪ a) ∪ c) ∩ ((a ∪ d) ∪ c)) |
5 | orcom 73 | . . . . 5 (b ∪ a) = (a ∪ b) | |
6 | orcom 73 | . . . . 5 (d ∪ c) = (c ∪ d) | |
7 | 5, 6 | 2an 79 | . . . 4 ((b ∪ a) ∩ (d ∪ c)) = ((a ∪ b) ∩ (c ∪ d)) |
8 | vneulem6.1 | . . . 4 ((a ∪ b) ∩ (c ∪ d)) = 0 | |
9 | 7, 8 | tr 62 | . . 3 ((b ∪ a) ∩ (d ∪ c)) = 0 |
10 | 9 | vneulem8 1138 | . 2 (((b ∪ a) ∪ c) ∩ ((a ∪ d) ∪ c)) = (a ∪ c) |
11 | 4, 10 | tr 62 | 1 (((a ∪ b) ∪ c) ∩ ((a ∪ c) ∪ d)) = (a ∪ c) |
Colors of variables: term |
Syntax hints: = wb 1 ∪ wo 6 ∩ wa 7 0wf 9 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1122 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: vneulem15 1145 |
Copyright terms: Public domain | W3C validator |