Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > vneulem5 | GIF version |
Description: Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by NM, 15-Mar-2010.) (Revised by NM, 31-Mar-2011.) |
Ref | Expression |
---|---|
vneulem5 | (((x ∪ y) ∪ u) ∩ ((x ∪ y) ∪ w)) = ((x ∪ y) ∪ (((x ∪ y) ∪ u) ∩ w)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 74 | . 2 (((x ∪ y) ∪ u) ∩ ((x ∪ y) ∪ w)) = (((x ∪ y) ∪ w) ∩ ((x ∪ y) ∪ u)) | |
2 | ml 1123 | . . 3 ((x ∪ y) ∪ (w ∩ ((x ∪ y) ∪ u))) = (((x ∪ y) ∪ w) ∩ ((x ∪ y) ∪ u)) | |
3 | 2 | cm 61 | . 2 (((x ∪ y) ∪ w) ∩ ((x ∪ y) ∪ u)) = ((x ∪ y) ∪ (w ∩ ((x ∪ y) ∪ u))) |
4 | ancom 74 | . . 3 (w ∩ ((x ∪ y) ∪ u)) = (((x ∪ y) ∪ u) ∩ w) | |
5 | 4 | lor 70 | . 2 ((x ∪ y) ∪ (w ∩ ((x ∪ y) ∪ u))) = ((x ∪ y) ∪ (((x ∪ y) ∪ u) ∩ w)) |
6 | 1, 3, 5 | 3tr 65 | 1 (((x ∪ y) ∪ u) ∩ ((x ∪ y) ∪ w)) = ((x ∪ y) ∪ (((x ∪ y) ∪ u) ∩ w)) |
Colors of variables: term |
Syntax hints: = wb 1 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1122 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: vneulem6 1136 vneulem9 1139 |
Copyright terms: Public domain | W3C validator |