Proof of Theorem vneulem6
| Step | Hyp | Ref
| Expression |
| 1 | | orcom 73 |
. . . . . . 7
(a ∪ b) = (b ∪
a) |
| 2 | 1 | ror 71 |
. . . . . 6
((a ∪ b) ∪ d) =
((b ∪ a) ∪ d) |
| 3 | | or32 82 |
. . . . . 6
((b ∪ a) ∪ d) =
((b ∪ d) ∪ a) |
| 4 | 2, 3 | tr 62 |
. . . . 5
((a ∪ b) ∪ d) =
((b ∪ d) ∪ a) |
| 5 | | or32 82 |
. . . . 5
((b ∪ c) ∪ d) =
((b ∪ d) ∪ c) |
| 6 | 4, 5 | 2an 79 |
. . . 4
(((a ∪ b) ∪ d)
∩ ((b ∪ c) ∪ d)) =
(((b ∪ d) ∪ a)
∩ ((b ∪ d) ∪ c)) |
| 7 | | vneulem5 1135 |
. . . 4
(((b ∪ d) ∪ a)
∩ ((b ∪ d) ∪ c)) =
((b ∪ d) ∪ (((b
∪ d) ∪ a) ∩ c)) |
| 8 | 6, 7 | ax-r2 36 |
. . 3
(((a ∪ b) ∪ d)
∩ ((b ∪ c) ∪ d)) =
((b ∪ d) ∪ (((b
∪ d) ∪ a) ∩ c)) |
| 9 | | leor 159 |
. . . 4
(b ∪ d) ≤ ((c
∩ a) ∪ (b ∪ d)) |
| 10 | | or32 82 |
. . . . . . 7
((b ∪ d) ∪ a) =
((b ∪ a) ∪ d) |
| 11 | 10 | ran 78 |
. . . . . 6
(((b ∪ d) ∪ a)
∩ c) = (((b ∪ a) ∪
d) ∩ c) |
| 12 | | ax-a2 31 |
. . . . . . . . 9
(b ∪ a) = (a ∪
b) |
| 13 | | ax-a2 31 |
. . . . . . . . 9
(d ∪ c) = (c ∪
d) |
| 14 | 12, 13 | 2an 79 |
. . . . . . . 8
((b ∪ a) ∩ (d
∪ c)) = ((a ∪ b) ∩
(c ∪ d)) |
| 15 | | vneulem6.1 |
. . . . . . . 8
((a ∪ b) ∩ (c
∪ d)) = 0 |
| 16 | 14, 15 | tr 62 |
. . . . . . 7
((b ∪ a) ∩ (d
∪ c)) = 0 |
| 17 | 16 | vneulem4 1134 |
. . . . . 6
(((b ∪ a) ∪ d)
∩ c) = (d ∩ c) |
| 18 | 11, 17 | tr 62 |
. . . . 5
(((b ∪ d) ∪ a)
∩ c) = (d ∩ c) |
| 19 | | leao3 164 |
. . . . . 6
(d ∩ c) ≤ (b ∪
d) |
| 20 | 19 | lerr 150 |
. . . . 5
(d ∩ c) ≤ ((c
∩ a) ∪ (b ∪ d)) |
| 21 | 18, 20 | bltr 138 |
. . . 4
(((b ∪ d) ∪ a)
∩ c) ≤ ((c ∩ a) ∪
(b ∪ d)) |
| 22 | 9, 21 | lel2or 170 |
. . 3
((b ∪ d) ∪ (((b
∪ d) ∪ a) ∩ c))
≤ ((c ∩ a) ∪ (b
∪ d)) |
| 23 | 8, 22 | bltr 138 |
. 2
(((a ∪ b) ∪ d)
∩ ((b ∪ c) ∪ d))
≤ ((c ∩ a) ∪ (b
∪ d)) |
| 24 | | leao2 163 |
. . . . 5
(c ∩ a) ≤ (a ∪
b) |
| 25 | 24 | ler 149 |
. . . 4
(c ∩ a) ≤ ((a
∪ b) ∪ d) |
| 26 | | leor 159 |
. . . . 5
b ≤ (a ∪ b) |
| 27 | 26 | leror 152 |
. . . 4
(b ∪ d) ≤ ((a
∪ b) ∪ d) |
| 28 | 25, 27 | lel2or 170 |
. . 3
((c ∩ a) ∪ (b
∪ d)) ≤ ((a ∪ b) ∪
d) |
| 29 | | leao3 164 |
. . . . 5
(c ∩ a) ≤ (b ∪
c) |
| 30 | 29 | ler 149 |
. . . 4
(c ∩ a) ≤ ((b
∪ c) ∪ d) |
| 31 | | leo 158 |
. . . . 5
b ≤ (b ∪ c) |
| 32 | 31 | leror 152 |
. . . 4
(b ∪ d) ≤ ((b
∪ c) ∪ d) |
| 33 | 30, 32 | lel2or 170 |
. . 3
((c ∩ a) ∪ (b
∪ d)) ≤ ((b ∪ c) ∪
d) |
| 34 | 28, 33 | ler2an 173 |
. 2
((c ∩ a) ∪ (b
∪ d)) ≤ (((a ∪ b) ∪
d) ∩ ((b ∪ c) ∪
d)) |
| 35 | 23, 34 | lebi 145 |
1
(((a ∪ b) ∪ d)
∩ ((b ∪ c) ∪ d)) =
((c ∩ a) ∪ (b
∪ d)) |