Proof of Theorem wfh1
Step | Hyp | Ref
| Expression |
1 | | wledi 405 |
. . 3
(((a ∩ b) ∪ (a
∩ c)) ≤2 (a ∩ (b ∪
c))) = 1 |
2 | | ancom 74 |
. . . . . . 7
(a ∩ (b ∪ c)) =
((b ∪ c) ∩ a) |
3 | 2 | bi1 118 |
. . . . . 6
((a ∩ (b ∪ c))
≡ ((b ∪ c) ∩ a)) =
1 |
4 | | df-a 40 |
. . . . . . . . . 10
(a ∩ b) = (a⊥ ∪ b⊥
)⊥ |
5 | 4 | bi1 118 |
. . . . . . . . 9
((a ∩ b) ≡ (a⊥ ∪ b⊥ )⊥ ) =
1 |
6 | | df-a 40 |
. . . . . . . . . 10
(a ∩ c) = (a⊥ ∪ c⊥
)⊥ |
7 | 6 | bi1 118 |
. . . . . . . . 9
((a ∩ c) ≡ (a⊥ ∪ c⊥ )⊥ ) =
1 |
8 | 5, 7 | w2or 372 |
. . . . . . . 8
(((a ∩ b) ∪ (a
∩ c)) ≡ ((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ c⊥ )⊥ )) =
1 |
9 | | df-a 40 |
. . . . . . . . . . 11
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ )) = ((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ c⊥ )⊥
)⊥ |
10 | 9 | bi1 118 |
. . . . . . . . . 10
(((a⊥ ∪
b⊥ ) ∩ (a⊥ ∪ c⊥ )) ≡ ((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ c⊥ )⊥
)⊥ ) = 1 |
11 | 10 | wr1 197 |
. . . . . . . . 9
(((a⊥ ∪
b⊥ )⊥
∪ (a⊥ ∪ c⊥ )⊥
)⊥ ≡ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))) = 1 |
12 | 11 | wcon3 209 |
. . . . . . . 8
(((a⊥ ∪
b⊥ )⊥
∪ (a⊥ ∪ c⊥ )⊥ ) ≡
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))⊥ ) =
1 |
13 | 8, 12 | wr2 371 |
. . . . . . 7
(((a ∩ b) ∪ (a
∩ c)) ≡ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))⊥ ) =
1 |
14 | 13 | wcon2 208 |
. . . . . 6
(((a ∩ b) ∪ (a
∩ c))⊥ ≡
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))) = 1 |
15 | 3, 14 | w2an 373 |
. . . . 5
(((a ∩ (b ∪ c))
∩ ((a ∩ b) ∪ (a
∩ c))⊥ ) ≡
(((b ∪ c) ∩ a)
∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ )))) = 1 |
16 | | anass 76 |
. . . . . . . 8
(((b ∪ c) ∩ a)
∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))) = ((b ∪ c) ∩
(a ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ )))) |
17 | 16 | bi1 118 |
. . . . . . 7
((((b ∪ c) ∩ a)
∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))) ≡ ((b ∪ c) ∩
(a ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))))) = 1 |
18 | | wfh.1 |
. . . . . . . . . . . 12
C (a, b) = 1 |
19 | 18 | wcomcom2 415 |
. . . . . . . . . . 11
C (a, b⊥ ) = 1 |
20 | 19 | wcom3ii 419 |
. . . . . . . . . 10
((a ∩ (a⊥ ∪ b⊥ )) ≡ (a ∩ b⊥ )) = 1 |
21 | | wfh.2 |
. . . . . . . . . . . 12
C (a, c) = 1 |
22 | 21 | wcomcom2 415 |
. . . . . . . . . . 11
C (a, c⊥ ) = 1 |
23 | 22 | wcom3ii 419 |
. . . . . . . . . 10
((a ∩ (a⊥ ∪ c⊥ )) ≡ (a ∩ c⊥ )) = 1 |
24 | 20, 23 | w2an 373 |
. . . . . . . . 9
(((a ∩ (a⊥ ∪ b⊥ )) ∩ (a ∩ (a⊥ ∪ c⊥ ))) ≡ ((a ∩ b⊥ ) ∩ (a ∩ c⊥ ))) = 1 |
25 | | anandi 114 |
. . . . . . . . . 10
(a ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))) = ((a ∩ (a⊥ ∪ b⊥ )) ∩ (a ∩ (a⊥ ∪ c⊥ ))) |
26 | 25 | bi1 118 |
. . . . . . . . 9
((a ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))) ≡ ((a ∩ (a⊥ ∪ b⊥ )) ∩ (a ∩ (a⊥ ∪ c⊥ )))) = 1 |
27 | | anandi 114 |
. . . . . . . . . 10
(a ∩ (b⊥ ∩ c⊥ )) = ((a ∩ b⊥ ) ∩ (a ∩ c⊥ )) |
28 | 27 | bi1 118 |
. . . . . . . . 9
((a ∩ (b⊥ ∩ c⊥ )) ≡ ((a ∩ b⊥ ) ∩ (a ∩ c⊥ ))) = 1 |
29 | 24, 26, 28 | w3tr1 374 |
. . . . . . . 8
((a ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))) ≡ (a ∩ (b⊥ ∩ c⊥ ))) = 1 |
30 | 29 | wlan 370 |
. . . . . . 7
(((b ∪ c) ∩ (a
∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ )))) ≡ ((b ∪ c) ∩
(a ∩ (b⊥ ∩ c⊥ )))) = 1 |
31 | 17, 30 | wr2 371 |
. . . . . 6
((((b ∪ c) ∩ a)
∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))) ≡ ((b ∪ c) ∩
(a ∩ (b⊥ ∩ c⊥ )))) = 1 |
32 | | an12 81 |
. . . . . . 7
((b ∪ c) ∩ (a
∩ (b⊥ ∩ c⊥ ))) = (a ∩ ((b
∪ c) ∩ (b⊥ ∩ c⊥ ))) |
33 | 32 | bi1 118 |
. . . . . 6
(((b ∪ c) ∩ (a
∩ (b⊥ ∩ c⊥ ))) ≡ (a ∩ ((b
∪ c) ∩ (b⊥ ∩ c⊥ )))) = 1 |
34 | 31, 33 | wr2 371 |
. . . . 5
((((b ∪ c) ∩ a)
∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))) ≡ (a ∩ ((b
∪ c) ∩ (b⊥ ∩ c⊥ )))) = 1 |
35 | 15, 34 | wr2 371 |
. . . 4
(((a ∩ (b ∪ c))
∩ ((a ∩ b) ∪ (a
∩ c))⊥ ) ≡
(a ∩ ((b ∪ c) ∩
(b⊥ ∩ c⊥ )))) = 1 |
36 | | oran 87 |
. . . . . . . . . . 11
(b ∪ c) = (b⊥ ∩ c⊥
)⊥ |
37 | 36 | bi1 118 |
. . . . . . . . . 10
((b ∪ c) ≡ (b⊥ ∩ c⊥ )⊥ ) =
1 |
38 | 37 | wr1 197 |
. . . . . . . . 9
((b⊥ ∩ c⊥ )⊥ ≡
(b ∪ c)) = 1 |
39 | 38 | wcon3 209 |
. . . . . . . 8
((b⊥ ∩ c⊥ ) ≡ (b ∪ c)⊥ ) = 1 |
40 | 39 | wlan 370 |
. . . . . . 7
(((b ∪ c) ∩ (b⊥ ∩ c⊥ )) ≡ ((b ∪ c) ∩
(b ∪ c)⊥ )) = 1 |
41 | | dff 101 |
. . . . . . . . 9
0 = ((b ∪ c) ∩ (b
∪ c)⊥
) |
42 | 41 | bi1 118 |
. . . . . . . 8
(0 ≡ ((b ∪ c) ∩ (b
∪ c)⊥ )) =
1 |
43 | 42 | wr1 197 |
. . . . . . 7
(((b ∪ c) ∩ (b
∪ c)⊥ ) ≡ 0) =
1 |
44 | 40, 43 | wr2 371 |
. . . . . 6
(((b ∪ c) ∩ (b⊥ ∩ c⊥ )) ≡ 0) =
1 |
45 | 44 | wlan 370 |
. . . . 5
((a ∩ ((b ∪ c) ∩
(b⊥ ∩ c⊥ ))) ≡ (a ∩ 0)) = 1 |
46 | | an0 108 |
. . . . . 6
(a ∩ 0) = 0 |
47 | 46 | bi1 118 |
. . . . 5
((a ∩ 0) ≡ 0) =
1 |
48 | 45, 47 | wr2 371 |
. . . 4
((a ∩ ((b ∪ c) ∩
(b⊥ ∩ c⊥ ))) ≡ 0) =
1 |
49 | 35, 48 | wr2 371 |
. . 3
(((a ∩ (b ∪ c))
∩ ((a ∩ b) ∪ (a
∩ c))⊥ ) ≡ 0) =
1 |
50 | 1, 49 | wom5 381 |
. 2
(((a ∩ b) ∪ (a
∩ c)) ≡ (a ∩ (b ∪
c))) = 1 |
51 | 50 | wr1 197 |
1
((a ∩ (b ∪ c))
≡ ((a ∩ b) ∪ (a
∩ c))) = 1 |