Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wlecon | GIF version |
Description: Contrapositive for l.e. (Contributed by NM, 13-Oct-1997.) |
Ref | Expression |
---|---|
wle.1 | (a ≤2 b) = 1 |
Ref | Expression |
---|---|
wlecon | (b⊥ ≤2 a⊥ ) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a2 31 | . . . . 5 (b ∪ a) = (a ∪ b) | |
2 | 1 | bi1 118 | . . . 4 ((b ∪ a) ≡ (a ∪ b)) = 1 |
3 | oran 87 | . . . . 5 (b ∪ a) = (b⊥ ∩ a⊥ )⊥ | |
4 | 3 | bi1 118 | . . . 4 ((b ∪ a) ≡ (b⊥ ∩ a⊥ )⊥ ) = 1 |
5 | wle.1 | . . . . 5 (a ≤2 b) = 1 | |
6 | 5 | wdf-le2 379 | . . . 4 ((a ∪ b) ≡ b) = 1 |
7 | 2, 4, 6 | w3tr2 375 | . . 3 ((b⊥ ∩ a⊥ )⊥ ≡ b) = 1 |
8 | 7 | wcon3 209 | . 2 ((b⊥ ∩ a⊥ ) ≡ b⊥ ) = 1 |
9 | 8 | wdf2le1 385 | 1 (b⊥ ≤2 a⊥ ) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 ≤2 wle2 10 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |