Proof of Theorem wcomd
Step | Hyp | Ref
| Expression |
1 | | wcomcom.1 |
. . . . 5
C (a, b) = 1 |
2 | 1 | wcomcom4 417 |
. . . 4
C (a⊥ ,
b⊥ ) = 1 |
3 | 2 | wdf-c2 384 |
. . 3
(a⊥ ≡
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) =
1 |
4 | 3 | wcon3 209 |
. 2
(a ≡ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
))⊥ ) = 1 |
5 | | oran 87 |
. . . . 5
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) =
((a⊥ ∩ b⊥ )⊥ ∩
(a⊥ ∩ b⊥ ⊥
)⊥ )⊥ |
6 | 5 | bi1 118 |
. . . 4
(((a⊥ ∩
b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) ≡
((a⊥ ∩ b⊥ )⊥ ∩
(a⊥ ∩ b⊥ ⊥
)⊥ )⊥ ) = 1 |
7 | 6 | wcon2 208 |
. . 3
(((a⊥ ∩
b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
))⊥ ≡ ((a⊥ ∩ b⊥ )⊥ ∩
(a⊥ ∩ b⊥ ⊥
)⊥ )) = 1 |
8 | | oran 87 |
. . . . . 6
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
9 | 8 | bi1 118 |
. . . . 5
((a ∪ b) ≡ (a⊥ ∩ b⊥ )⊥ ) =
1 |
10 | | oran 87 |
. . . . . 6
(a ∪ b⊥ ) = (a⊥ ∩ b⊥ ⊥
)⊥ |
11 | 10 | bi1 118 |
. . . . 5
((a ∪ b⊥ ) ≡ (a⊥ ∩ b⊥ ⊥
)⊥ ) = 1 |
12 | 9, 11 | w2an 373 |
. . . 4
(((a ∪ b) ∩ (a
∪ b⊥ )) ≡
((a⊥ ∩ b⊥ )⊥ ∩
(a⊥ ∩ b⊥ ⊥
)⊥ )) = 1 |
13 | 12 | wr1 197 |
. . 3
(((a⊥ ∩
b⊥ )⊥
∩ (a⊥ ∩ b⊥ ⊥
)⊥ ) ≡ ((a ∪
b) ∩ (a ∪ b⊥ ))) = 1 |
14 | 7, 13 | wr2 371 |
. 2
(((a⊥ ∩
b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
))⊥ ≡ ((a ∪
b) ∩ (a ∪ b⊥ ))) = 1 |
15 | 4, 14 | wr2 371 |
1
(a ≡ ((a ∪ b) ∩
(a ∪ b⊥ ))) = 1 |