QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  wcon2 GIF version

Theorem wcon2 208
Description: Weak contraposition. (Contributed by NM, 24-Sep-1997.)
Hypothesis
Ref Expression
wcon2.1 (ab ) = 1
Assertion
Ref Expression
wcon2 (ab) = 1

Proof of Theorem wcon2
StepHypRef Expression
1 conb 122 . . 3 (ab) = (a b )
2 ax-a1 30 . . . . 5 a = a
32rbi 98 . . . 4 (ab ) = (a b )
43ax-r1 35 . . 3 (a b ) = (ab )
51, 4ax-r2 36 . 2 (ab) = (ab )
6 wcon2.1 . 2 (ab ) = 1
75, 6ax-r2 36 1 (ab) = 1
Colors of variables: term
Syntax hints:   = wb 1   wn 4  tb 5  1wt 8
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-b 39  df-a 40
This theorem is referenced by:  wcomlem  382  wcomd  418  wcomdr  421  wcom3i  422  wfh1  423  wfh2  424
  Copyright terms: Public domain W3C validator