Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wddi2 | GIF version |
Description: The weak distributive law in WDOL. (Contributed by NM, 5-Mar-2006.) |
Ref | Expression |
---|---|
wddi2 | (((a ∪ b) ∩ c) ≡ ((a ∩ c) ∪ (b ∩ c))) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wancom 203 | . 2 (((a ∪ b) ∩ c) ≡ (c ∩ (a ∪ b))) = 1 | |
2 | wddi1 1107 | . . 3 ((c ∩ (a ∪ b)) ≡ ((c ∩ a) ∪ (c ∩ b))) = 1 | |
3 | wancom 203 | . . . 4 ((c ∩ a) ≡ (a ∩ c)) = 1 | |
4 | wancom 203 | . . . 4 ((c ∩ b) ≡ (b ∩ c)) = 1 | |
5 | 3, 4 | w2or 372 | . . 3 (((c ∩ a) ∪ (c ∩ b)) ≡ ((a ∩ c) ∪ (b ∩ c))) = 1 |
6 | 2, 5 | wr2 371 | . 2 ((c ∩ (a ∪ b)) ≡ ((a ∩ c) ∪ (b ∩ c))) = 1 |
7 | 1, 6 | wr2 371 | 1 (((a ∪ b) ∩ c) ≡ ((a ∩ c) ∪ (b ∩ c))) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ≡ tb 5 ∪ wo 6 ∩ wa 7 1wt 8 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 ax-wdol 1104 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 df-cmtr 134 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |