Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wddi4 | GIF version |
Description: The weak distributive law in WDOL. (Contributed by NM, 5-Mar-2006.) |
Ref | Expression |
---|---|
wddi4 | (((a ∩ b) ∪ c) ≡ ((a ∪ c) ∩ (b ∪ c))) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wa2 192 | . 2 (((a ∩ b) ∪ c) ≡ (c ∪ (a ∩ b))) = 1 | |
2 | wddi3 1109 | . . 3 ((c ∪ (a ∩ b)) ≡ ((c ∪ a) ∩ (c ∪ b))) = 1 | |
3 | wa2 192 | . . . 4 ((c ∪ a) ≡ (a ∪ c)) = 1 | |
4 | wa2 192 | . . . 4 ((c ∪ b) ≡ (b ∪ c)) = 1 | |
5 | 3, 4 | w2an 373 | . . 3 (((c ∪ a) ∩ (c ∪ b)) ≡ ((a ∪ c) ∩ (b ∪ c))) = 1 |
6 | 2, 5 | wr2 371 | . 2 ((c ∪ (a ∩ b)) ≡ ((a ∪ c) ∩ (b ∪ c))) = 1 |
7 | 1, 6 | wr2 371 | 1 (((a ∩ b) ∪ c) ≡ ((a ∪ c) ∩ (b ∪ c))) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ≡ tb 5 ∪ wo 6 ∩ wa 7 1wt 8 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 ax-wdol 1104 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 df-cmtr 134 |
This theorem is referenced by: wdid0id5 1111 |
Copyright terms: Public domain | W3C validator |