Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  wleror GIF version

Theorem wleror 393
 Description: Add disjunct to right of both sides. (Contributed by NM, 13-Oct-1997.)
Hypothesis
Ref Expression
wle.1 (a2 b) = 1
Assertion
Ref Expression
wleror ((ac) ≤2 (bc)) = 1

Proof of Theorem wleror
StepHypRef Expression
1 orordir 113 . . . . 5 ((ab) ∪ c) = ((ac) ∪ (bc))
21bi1 118 . . . 4 (((ab) ∪ c) ≡ ((ac) ∪ (bc))) = 1
32wr1 197 . . 3 (((ac) ∪ (bc)) ≡ ((ab) ∪ c)) = 1
4 wle.1 . . . . 5 (a2 b) = 1
54wdf-le2 379 . . . 4 ((ab) ≡ b) = 1
65wr5-2v 366 . . 3 (((ab) ∪ c) ≡ (bc)) = 1
73, 6wr2 371 . 2 (((ac) ∪ (bc)) ≡ (bc)) = 1
87wdf-le1 378 1 ((ac) ≤2 (bc)) = 1
 Colors of variables: term Syntax hints:   = wb 1   ∪ wo 6  1wt 8   ≤2 wle2 10 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-wom 361 This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-le 129  df-le1 130  df-le2 131 This theorem is referenced by:  wle2or  403
 Copyright terms: Public domain W3C validator