QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  wdf2le2 GIF version

Theorem wdf2le2 386
Description: Alternate definition of "less than or equal to". (Contributed by NM, 27-Sep-1997.)
Hypothesis
Ref Expression
wdf2le2.1 (a2 b) = 1
Assertion
Ref Expression
wdf2le2 ((ab) ≡ a) = 1

Proof of Theorem wdf2le2
StepHypRef Expression
1 wdf2le2.1 . . 3 (a2 b) = 1
21wdf-le2 379 . 2 ((ab) ≡ b) = 1
32wleoa 376 1 ((ab) ≡ a) = 1
Colors of variables: term
Syntax hints:   = wb 1  tb 5  wa 7  1wt 8  2 wle2 10
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-wom 361
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-le 129  df-le1 130  df-le2 131
This theorem is referenced by:  wlel  392  wleran  394  wlbtr  398  wlecom  409
  Copyright terms: Public domain W3C validator