Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wlebi | GIF version |
Description: L.e. to biconditional. (Contributed by NM, 13-Oct-1997.) |
Ref | Expression |
---|---|
wlebi.1 | (a ≤2 b) = 1 |
wlebi.2 | (b ≤2 a) = 1 |
Ref | Expression |
---|---|
wlebi | (a ≡ b) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlebi.2 | . . . . 5 (b ≤2 a) = 1 | |
2 | 1 | wdf-le2 379 | . . . 4 ((b ∪ a) ≡ a) = 1 |
3 | 2 | wr1 197 | . . 3 (a ≡ (b ∪ a)) = 1 |
4 | ax-a2 31 | . . . 4 (b ∪ a) = (a ∪ b) | |
5 | 4 | bi1 118 | . . 3 ((b ∪ a) ≡ (a ∪ b)) = 1 |
6 | 3, 5 | wr2 371 | . 2 (a ≡ (a ∪ b)) = 1 |
7 | wlebi.1 | . . 3 (a ≤2 b) = 1 | |
8 | 7 | wdf-le2 379 | . 2 ((a ∪ b) ≡ b) = 1 |
9 | 6, 8 | wr2 371 | 1 (a ≡ b) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ≡ tb 5 ∪ wo 6 1wt 8 ≤2 wle2 10 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |