Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wletr | GIF version |
Description: Transitive law for l.e. (Contributed by NM, 13-Oct-1997.) |
Ref | Expression |
---|---|
wletr.1 | (a ≤2 b) = 1 |
wletr.2 | (b ≤2 c) = 1 |
Ref | Expression |
---|---|
wletr | (a ≤2 c) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wletr.1 | . . . . . . . 8 (a ≤2 b) = 1 | |
2 | 1 | wdf-le2 379 | . . . . . . 7 ((a ∪ b) ≡ b) = 1 |
3 | 2 | wr5-2v 366 | . . . . . 6 (((a ∪ b) ∪ c) ≡ (b ∪ c)) = 1 |
4 | 3 | wr1 197 | . . . . 5 ((b ∪ c) ≡ ((a ∪ b) ∪ c)) = 1 |
5 | wletr.2 | . . . . . 6 (b ≤2 c) = 1 | |
6 | 5 | wdf-le2 379 | . . . . 5 ((b ∪ c) ≡ c) = 1 |
7 | ax-a3 32 | . . . . . 6 ((a ∪ b) ∪ c) = (a ∪ (b ∪ c)) | |
8 | 7 | bi1 118 | . . . . 5 (((a ∪ b) ∪ c) ≡ (a ∪ (b ∪ c))) = 1 |
9 | 4, 6, 8 | w3tr2 375 | . . . 4 (c ≡ (a ∪ (b ∪ c))) = 1 |
10 | 9 | wlan 370 | . . 3 ((a ∩ c) ≡ (a ∩ (a ∪ (b ∪ c)))) = 1 |
11 | anabs 121 | . . . 4 (a ∩ (a ∪ (b ∪ c))) = a | |
12 | 11 | bi1 118 | . . 3 ((a ∩ (a ∪ (b ∪ c))) ≡ a) = 1 |
13 | 10, 12 | wr2 371 | . 2 ((a ∩ c) ≡ a) = 1 |
14 | 13 | wdf2le1 385 | 1 (a ≤2 c) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ∪ wo 6 ∩ wa 7 1wt 8 ≤2 wle2 10 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 |
This theorem is referenced by: wle2or 403 wle2an 404 ska4 433 |
Copyright terms: Public domain | W3C validator |