Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > oran2 | GIF version |
Description: Disjunction expressed with conjunction. (Contributed by NM, 15-Dec-1997.) |
Ref | Expression |
---|---|
oran2 | (a⊥ ∪ b) = (a ∩ b⊥ )⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anor1 88 | . . 3 (a ∩ b⊥ ) = (a⊥ ∪ b)⊥ | |
2 | 1 | ax-r1 35 | . 2 (a⊥ ∪ b)⊥ = (a ∩ b⊥ ) |
3 | 2 | con3 68 | 1 (a⊥ ∪ b) = (a ∩ b⊥ )⊥ |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 |
This theorem is referenced by: wql2lem3 290 k1-6 353 k1-7 354 wdf-c2 384 u1lemnanb 655 u2lemnanb 656 u3lemnanb 657 u4lemnanb 658 u5lemnanb 659 u3lemnona 667 u4lemnob 673 u4lem5 764 u4lem5n 766 u2lem7n 775 bi4 840 negantlem8 856 neg3antlem2 865 mhlem2 878 marsdenlem3 882 marsdenlem4 883 oa4cl 1027 |
Copyright terms: Public domain | W3C validator |