Proof of Theorem wql2lem5
Step | Hyp | Ref
| Expression |
1 | | anor3 90 |
. . . 4
((b⊥ ∩
(a ∪ b))⊥ ∩ a⊥ ⊥ ) =
((b⊥ ∩ (a ∪ b))
∪ a⊥
)⊥ |
2 | | oran3 93 |
. . . . . 6
((a →2 b)⊥ ∪ a⊥ ) = ((a →2 b) ∩ a)⊥ |
3 | | ud2lem0c 278 |
. . . . . . 7
(a →2 b)⊥ = (b⊥ ∩ (a ∪ b)) |
4 | 3 | ax-r5 38 |
. . . . . 6
((a →2 b)⊥ ∪ a⊥ ) = ((b⊥ ∩ (a ∪ b))
∪ a⊥
) |
5 | | wql2lem5.1 |
. . . . . . . . 9
(a →2 b) = 1 |
6 | 5 | ran 78 |
. . . . . . . 8
((a →2 b) ∩ a) = (1
∩ a) |
7 | | ancom 74 |
. . . . . . . 8
(1 ∩ a) = (a ∩ 1) |
8 | | an1 106 |
. . . . . . . 8
(a ∩ 1) = a |
9 | 6, 7, 8 | 3tr 65 |
. . . . . . 7
((a →2 b) ∩ a) =
a |
10 | 9 | ax-r4 37 |
. . . . . 6
((a →2 b) ∩ a)⊥ = a⊥ |
11 | 2, 4, 10 | 3tr2 64 |
. . . . 5
((b⊥ ∩
(a ∪ b)) ∪ a⊥ ) = a⊥ |
12 | 11 | ax-r4 37 |
. . . 4
((b⊥ ∩
(a ∪ b)) ∪ a⊥ )⊥ = a⊥
⊥ |
13 | 1, 12 | ax-r2 36 |
. . 3
((b⊥ ∩
(a ∪ b))⊥ ∩ a⊥ ⊥ ) = a⊥
⊥ |
14 | 13 | lor 70 |
. 2
(a⊥ ∪
((b⊥ ∩ (a ∪ b))⊥ ∩ a⊥ ⊥ )) =
(a⊥ ∪ a⊥ ⊥
) |
15 | | df-i2 45 |
. 2
((b⊥ ∩
(a ∪ b)) →2 a⊥ ) = (a⊥ ∪ ((b⊥ ∩ (a ∪ b))⊥ ∩ a⊥ ⊥
)) |
16 | | df-t 41 |
. 2
1 = (a⊥ ∪
a⊥ ⊥
) |
17 | 14, 15, 16 | 3tr1 63 |
1
((b⊥ ∩
(a ∪ b)) →2 a⊥ ) = 1 |