Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > ud2lem0c | GIF version |
Description: Lemma for unified disjunction. (Contributed by NM, 23-Nov-1997.) |
Ref | Expression |
---|---|
ud2lem0c | (a →2 b)⊥ = (b⊥ ∩ (a ∪ b)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i2 45 | . . 3 (a →2 b) = (b ∪ (a⊥ ∩ b⊥ )) | |
2 | oran 87 | . . . 4 (b ∪ (a⊥ ∩ b⊥ )) = (b⊥ ∩ (a⊥ ∩ b⊥ )⊥ )⊥ | |
3 | oran 87 | . . . . . . 7 (a ∪ b) = (a⊥ ∩ b⊥ )⊥ | |
4 | 3 | ax-r1 35 | . . . . . 6 (a⊥ ∩ b⊥ )⊥ = (a ∪ b) |
5 | 4 | lan 77 | . . . . 5 (b⊥ ∩ (a⊥ ∩ b⊥ )⊥ ) = (b⊥ ∩ (a ∪ b)) |
6 | 5 | ax-r4 37 | . . . 4 (b⊥ ∩ (a⊥ ∩ b⊥ )⊥ )⊥ = (b⊥ ∩ (a ∪ b))⊥ |
7 | 2, 6 | ax-r2 36 | . . 3 (b ∪ (a⊥ ∩ b⊥ )) = (b⊥ ∩ (a ∪ b))⊥ |
8 | 1, 7 | ax-r2 36 | . 2 (a →2 b) = (b⊥ ∩ (a ∪ b))⊥ |
9 | 8 | con2 67 | 1 (a →2 b)⊥ = (b⊥ ∩ (a ∪ b)) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-i2 45 |
This theorem is referenced by: wql2lem5 292 ud2lem1 563 ud2lem3 565 u2lem1 735 3vth9 812 2oalem1 825 oa43v 1028 oa63v 1032 |
Copyright terms: Public domain | W3C validator |