Proof of Theorem wwcomd
Step | Hyp | Ref
| Expression |
1 | | wwcomd.1 |
. . . 4
a⊥ C
b |
2 | 1 | df-c2 133 |
. . 3
a⊥ = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
3 | | oran 87 |
. . . 4
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) = ((a⊥ ∩ b⊥ )⊥ ∩
(a⊥ ∩ b)⊥
)⊥ |
4 | | ax-a2 31 |
. . . 4
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) |
5 | | oran 87 |
. . . . . 6
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
6 | | anor2 89 |
. . . . . . . 8
(a⊥ ∩ b) = (a ∪
b⊥
)⊥ |
7 | 6 | ax-r1 35 |
. . . . . . 7
(a ∪ b⊥ )⊥ = (a⊥ ∩ b) |
8 | 7 | con3 68 |
. . . . . 6
(a ∪ b⊥ ) = (a⊥ ∩ b)⊥ |
9 | 5, 8 | 2an 79 |
. . . . 5
((a ∪ b) ∩ (a
∪ b⊥ )) = ((a⊥ ∩ b⊥ )⊥ ∩
(a⊥ ∩ b)⊥ ) |
10 | 9 | ax-r4 37 |
. . . 4
((a ∪ b) ∩ (a
∪ b⊥
))⊥ = ((a⊥ ∩ b⊥ )⊥ ∩
(a⊥ ∩ b)⊥
)⊥ |
11 | 3, 4, 10 | 3tr1 63 |
. . 3
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((a ∪ b) ∩
(a ∪ b⊥
))⊥ |
12 | 2, 11 | ax-r2 36 |
. 2
a⊥ = ((a ∪ b) ∩
(a ∪ b⊥
))⊥ |
13 | 12 | con1 66 |
1
a = ((a ∪ b) ∩
(a ∪ b⊥ )) |