ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1strbas Unicode version

Theorem 1strbas 12058
Description: The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.)
Hypothesis
Ref Expression
1str.g  |-  G  =  { <. ( Base `  ndx ) ,  B >. }
Assertion
Ref Expression
1strbas  |-  ( B  e.  V  ->  B  =  ( Base `  G
) )

Proof of Theorem 1strbas
StepHypRef Expression
1 baseslid 12015 . 2  |-  ( Base 
= Slot  ( Base `  ndx )  /\  ( Base `  ndx )  e.  NN )
2 1str.g . . 3  |-  G  =  { <. ( Base `  ndx ) ,  B >. }
3 basendxnn 12014 . . . . 5  |-  ( Base `  ndx )  e.  NN
4 opexg 4150 . . . . 5  |-  ( ( ( Base `  ndx )  e.  NN  /\  B  e.  V )  ->  <. ( Base `  ndx ) ,  B >.  e.  _V )
53, 4mpan 420 . . . 4  |-  ( B  e.  V  ->  <. ( Base `  ndx ) ,  B >.  e.  _V )
6 snexg 4108 . . . 4  |-  ( <.
( Base `  ndx ) ,  B >.  e.  _V  ->  { <. ( Base `  ndx ) ,  B >. }  e.  _V )
75, 6syl 14 . . 3  |-  ( B  e.  V  ->  { <. (
Base `  ndx ) ,  B >. }  e.  _V )
82, 7eqeltrid 2226 . 2  |-  ( B  e.  V  ->  G  e.  _V )
9 funsng 5169 . . . 4  |-  ( ( ( Base `  ndx )  e.  NN  /\  B  e.  V )  ->  Fun  {
<. ( Base `  ndx ) ,  B >. } )
103, 9mpan 420 . . 3  |-  ( B  e.  V  ->  Fun  {
<. ( Base `  ndx ) ,  B >. } )
112funeqi 5144 . . 3  |-  ( Fun 
G  <->  Fun  { <. ( Base `  ndx ) ,  B >. } )
1210, 11sylibr 133 . 2  |-  ( B  e.  V  ->  Fun  G )
13 snidg 3554 . . . 4  |-  ( <.
( Base `  ndx ) ,  B >.  e.  _V  -> 
<. ( Base `  ndx ) ,  B >.  e. 
{ <. ( Base `  ndx ) ,  B >. } )
145, 13syl 14 . . 3  |-  ( B  e.  V  ->  <. ( Base `  ndx ) ,  B >.  e.  { <. (
Base `  ndx ) ,  B >. } )
1514, 2eleqtrrdi 2233 . 2  |-  ( B  e.  V  ->  <. ( Base `  ndx ) ,  B >.  e.  G
)
161, 8, 12, 15strslfvd 12000 1  |-  ( B  e.  V  ->  B  =  ( Base `  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331    e. wcel 1480   _Vcvv 2686   {csn 3527   <.cop 3530   Fun wfun 5117   ` cfv 5123   NNcn 8720   ndxcnx 11956   Basecbs 11959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-cnex 7711  ax-resscn 7712  ax-1re 7714  ax-addrcl 7717
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-iota 5088  df-fun 5125  df-fv 5131  df-inn 8721  df-ndx 11962  df-slot 11963  df-base 11965
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator