ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absle Unicode version

Theorem absle 10861
Description: Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
absle  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  <_  B  <->  ( -u B  <_  A  /\  A  <_  B ) ) )

Proof of Theorem absle
StepHypRef Expression
1 simpll 518 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  A  e.  RR )
21renegcld 8142 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  -> 
-u A  e.  RR )
31recnd 7794 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  A  e.  CC )
4 abscl 10823 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
53, 4syl 14 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  ( abs `  A
)  e.  RR )
6 simplr 519 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  B  e.  RR )
7 leabs 10846 . . . . . . 7  |-  ( -u A  e.  RR  ->  -u A  <_  ( abs `  -u A
) )
82, 7syl 14 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  -> 
-u A  <_  ( abs `  -u A ) )
9 absneg 10822 . . . . . . 7  |-  ( A  e.  CC  ->  ( abs `  -u A )  =  ( abs `  A
) )
103, 9syl 14 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  ( abs `  -u A
)  =  ( abs `  A ) )
118, 10breqtrd 3954 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  -> 
-u A  <_  ( abs `  A ) )
12 simpr 109 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  ( abs `  A
)  <_  B )
132, 5, 6, 11, 12letrd 7886 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  -> 
-u A  <_  B
)
14 leabs 10846 . . . . . 6  |-  ( A  e.  RR  ->  A  <_  ( abs `  A
) )
1514ad2antrr 479 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  A  <_  ( abs `  A ) )
161, 5, 6, 15, 12letrd 7886 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  A  <_  B )
1713, 16jca 304 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  ( -u A  <_  B  /\  A  <_  B
) )
18 simpll 518 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  A  e.  RR )
19 simplr 519 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  B  e.  RR )
2018recnd 7794 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  A  e.  CC )
2120, 4syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( abs `  A
)  e.  RR )
22 axltwlin 7832 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  ( abs `  A )  e.  RR  /\  A  e.  RR )  ->  ( B  <  ( abs `  A
)  ->  ( B  <  A  \/  A  < 
( abs `  A
) ) ) )
2319, 21, 18, 22syl3anc 1216 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  -> 
( B  <  A  \/  A  <  ( abs `  A ) ) ) )
24 simprr 521 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  A  <_  B )
2518, 19lenltd 7880 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( A  <_  B  <->  -.  B  <  A ) )
2624, 25mpbid 146 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  -.  B  <  A )
27 pm2.53 711 . . . . . . . . 9  |-  ( ( B  <  A  \/  A  <  ( abs `  A
) )  ->  ( -.  B  <  A  ->  A  <  ( abs `  A
) ) )
2823, 26, 27syl6ci 1421 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  ->  A  <  ( abs `  A
) ) )
29 simpl 108 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  e.  RR )
3029recnd 7794 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  e.  CC )
3130, 9syl 14 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( abs `  -u A )  =  ( abs `  A
) )
3229renegcld 8142 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  -u A  e.  RR )
33 0red 7767 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  0  e.  RR )
34 ltabs 10859 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  <  0 )
3529, 33, 34ltled 7881 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  <_  0 )
3629le0neg1d 8279 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( A  <_  0  <->  0  <_  -u A ) )
3735, 36mpbid 146 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  0  <_ 
-u A )
38 absid 10843 . . . . . . . . . 10  |-  ( (
-u A  e.  RR  /\  0  <_  -u A )  ->  ( abs `  -u A
)  =  -u A
)
3932, 37, 38syl2anc 408 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( abs `  -u A )  = 
-u A )
4031, 39eqtr3d 2174 . . . . . . . 8  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( abs `  A )  = 
-u A )
4118, 28, 40syl6an 1410 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  -> 
( abs `  A
)  =  -u A
) )
42 simprl 520 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  -u A  <_  B )
43 breq1 3932 . . . . . . . 8  |-  ( ( abs `  A )  =  -u A  ->  (
( abs `  A
)  <_  B  <->  -u A  <_  B ) )
4442, 43syl5ibrcom 156 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( ( abs `  A
)  =  -u A  ->  ( abs `  A
)  <_  B )
)
4541, 44syld 45 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  -> 
( abs `  A
)  <_  B )
)
4621, 19lenltd 7880 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( ( abs `  A
)  <_  B  <->  -.  B  <  ( abs `  A
) ) )
4745, 46sylibd 148 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  ->  -.  B  <  ( abs `  A ) ) )
4847pm2.01d 607 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  -.  B  <  ( abs `  A ) )
4948, 46mpbird 166 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( abs `  A
)  <_  B )
5017, 49impbida 585 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  <_  B  <->  ( -u A  <_  B  /\  A  <_  B ) ) )
51 lenegcon1 8228 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u A  <_  B 
<-> 
-u B  <_  A
) )
5251anbi1d 460 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( -u A  <_  B  /\  A  <_  B )  <->  ( -u B  <_  A  /\  A  <_  B ) ) )
5350, 52bitrd 187 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  <_  B  <->  ( -u B  <_  A  /\  A  <_  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480   class class class wbr 3929   ` cfv 5123   CCcc 7618   RRcr 7619   0cc0 7620    < clt 7800    <_ cle 7801   -ucneg 7934   abscabs 10769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771
This theorem is referenced by:  absdifle  10865  lenegsq  10867  abs2difabs  10880  abslei  10911  absled  10947  dfabsmax  10989
  Copyright terms: Public domain W3C validator