ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcva Unicode version

Theorem rspcva 2700
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-2005.)
Hypothesis
Ref Expression
rspcv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rspcva  |-  ( ( A  e.  B  /\  A. x  e.  B  ph )  ->  ps )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem rspcva
StepHypRef Expression
1 rspcv.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21rspcv 2698 . 2  |-  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  ps ) )
32imp 122 1  |-  ( ( A  e.  B  /\  A. x  e.  B  ph )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   A.wral 2349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-v 2604
This theorem is referenced by:  tfisi  4336  suppssov1  5740  caofinvl  5764  tfrlem1  5957  supmoti  6465  caucvgsrlemgt1  7033  peano2nnnn  7083  axcaucvglemcau  7126  squeeze0  8049  peano2nn  8118  nnsub  8144  zextle  8519  rexuz3  10014  cau3lem  10138  caubnd2  10141  climcn1  10285  serif0  10327  dvdsext  10400
  Copyright terms: Public domain W3C validator