ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uztrn2 Unicode version

Theorem uztrn2 8706
Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.)
Hypothesis
Ref Expression
uztrn2.1  |-  Z  =  ( ZZ>= `  K )
Assertion
Ref Expression
uztrn2  |-  ( ( N  e.  Z  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  Z )

Proof of Theorem uztrn2
StepHypRef Expression
1 uztrn2.1 . . . 4  |-  Z  =  ( ZZ>= `  K )
21eleq2i 2146 . . 3  |-  ( N  e.  Z  <->  N  e.  ( ZZ>= `  K )
)
3 uztrn 8705 . . . 4  |-  ( ( M  e.  ( ZZ>= `  N )  /\  N  e.  ( ZZ>= `  K )
)  ->  M  e.  ( ZZ>= `  K )
)
43ancoms 264 . . 3  |-  ( ( N  e.  ( ZZ>= `  K )  /\  M  e.  ( ZZ>= `  N )
)  ->  M  e.  ( ZZ>= `  K )
)
52, 4sylanb 278 . 2  |-  ( ( N  e.  Z  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  ( ZZ>= `  K ) )
65, 1syl6eleqr 2173 1  |-  ( ( N  e.  Z  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  Z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   ` cfv 4926   ZZ>=cuz 8689
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-setind 4282  ax-cnex 7118  ax-resscn 7119  ax-pre-ltwlin 7140
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-br 3788  df-opab 3842  df-mpt 3843  df-id 4050  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-fv 4934  df-ov 5540  df-pnf 7206  df-mnf 7207  df-xr 7208  df-ltxr 7209  df-le 7210  df-neg 7338  df-z 8422  df-uz 8690
This theorem is referenced by:  eluznn0  8756  eluznn  8757  elfzuz2  9113  rexuz3  10003  r19.29uz  10005  r19.2uz  10006  clim2  10249  clim2c  10250  clim0c  10252  2clim  10267  climabs0  10273  climcn1  10274  climcn2  10275  climsqz  10300  climsqz2  10301  clim2iser  10302  clim2iser2  10303  climub  10309  serif0  10316
  Copyright terms: Public domain W3C validator