ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvti Unicode version

Theorem cnvti 6906
Description: If a relation satisfies a condition corresponding to tightness of an apartness generated by an order, so does its converse. (Contributed by Jim Kingdon, 17-Dec-2021.)
Hypothesis
Ref Expression
eqinfti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
Assertion
Ref Expression
cnvti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u `' R v  /\  -.  v `' R u ) ) )
Distinct variable groups:    u, A, v    ph, u, v    u, R, v

Proof of Theorem cnvti
StepHypRef Expression
1 eqinfti.ti . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
2 ancom 264 . . 3  |-  ( ( -.  u R v  /\  -.  v R u )  <->  ( -.  v R u  /\  -.  u R v ) )
31, 2syl6bb 195 . 2  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  v R u  /\  -.  u R v ) ) )
4 brcnvg 4720 . . . . 5  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( u `' R
v  <->  v R u ) )
54notbid 656 . . . 4  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( -.  u `' R v  <->  -.  v R u ) )
6 brcnvg 4720 . . . . . 6  |-  ( ( v  e.  A  /\  u  e.  A )  ->  ( v `' R u 
<->  u R v ) )
76ancoms 266 . . . . 5  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( v `' R u 
<->  u R v ) )
87notbid 656 . . . 4  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( -.  v `' R u  <->  -.  u R v ) )
95, 8anbi12d 464 . . 3  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( ( -.  u `' R v  /\  -.  v `' R u )  <->  ( -.  v R u  /\  -.  u R v ) ) )
109adantl 275 . 2  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( ( -.  u `' R v  /\  -.  v `' R u )  <->  ( -.  v R u  /\  -.  u R v ) ) )
113, 10bitr4d 190 1  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u `' R v  /\  -.  v `' R u ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1480   class class class wbr 3929   `'ccnv 4538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-cnv 4547
This theorem is referenced by:  eqinfti  6907  infvalti  6909  infclti  6910  inflbti  6911  infglbti  6912  infmoti  6915  infsnti  6917  infisoti  6919  infrenegsupex  9389  infxrnegsupex  11032
  Copyright terms: Public domain W3C validator